Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(9): 5759-5780, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38373254

RESUMEN

This perspective highlights advances in the preparation and understanding of metal nanoclusters stabilized by organic ligands with a focus on N-heterocyclic carbenes (NHCs). We demonstrate the need for a clear understanding of the relationship between NHC properties and their resulting metal nanocluster structure and properties. We emphasize the importance of balancing nanocluster stability with the introduction of reactive sites for catalytic applications and the importance of a better understanding of how these clusters interact with their environments for effective use in biological applications. The impact of atom-scale simulations, development of atomic interaction potentials suitable for large-scale molecular dynamics simulations, and a deeper understanding of the mechanisms behind synthetic methods and physical properties (e.g., the bright fluorescence displayed by many clusters) are emphasized.

2.
JACS Au ; 2(4): 875-885, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35557749

RESUMEN

Herein, we describe the synthesis of a toroidal Au10 cluster stabilized by N-heterocyclic carbene and halide ligands via reduction of the corresponding NHC-Au-X complexes (X = Cl, Br, I). The significant effect of the halide ligands on the formation, stability, and further conversions of these clusters is presented. While solutions of the chloride derivatives of Au10 show no change even upon heating, the bromide derivative readily undergoes conversion to form a biicosahedral Au25 cluster at room temperature. For the iodide derivative, the formation of a significant amount of Au25 was observed even upon the reduction of NHC-Au-I. The isolated bromide derivative of the Au25 cluster displays a relatively high (ca. 15%) photoluminescence quantum yield, attributed to the high rigidity of the cluster, which is enforced by multiple CH-π interactions within the molecular structure. Density functional theory computations are used to characterize the electronic structure and optical absorption of the Au10 cluster. 13C-Labeling is employed to assist with characterization of the products and to observe their conversions by NMR spectroscopy.

3.
J Am Chem Soc ; 144(20): 9000-9006, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35549258

RESUMEN

Atomically precise hydrido gold nanoclusters are extremely rare but interesting due to their potential applications in catalysis. By optimization of molecular precursors, we have prepared an unprecedented N-heterocyclic carbene-stabilized hydrido gold nanocluster, [Au24(NHC)14Cl2H3]3+. This cluster comprises a dimer of two Au12 kernels, each adopting an icosahedral shape with one missing vertex. The two kernels are joined through triangular faces, which are capped with a total of three hydrides. The hydrides are detected by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy, with density functional theory calculations supporting their position bridging the six uncoordinated gold sites. The reactivity of this Au24H3 cluster in the electrocatalytic reduction of CO2 is demonstrated and benchmarked against related catalysts.

4.
Chem Sci ; 12(31): 10436-10440, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34447535

RESUMEN

A series of chiral Au13 nanoclusters were synthesized via the direct reduction of achiral dinuclear Au(i) halide complexes ligated by ortho-xylyl-linked bis-N-heterocyclic carbene (NHC) ligands. A broad range of functional groups are tolerated as wingtip substituents, allowing for the synthesis of a variety of functionalized chiral Au13 nanoclusters. Single crystal X-ray crystallography confirmed the molecular formula to be [Au13(bisNHC)5Cl2]Cl3, with a chiral helical arrangement of the five bidentate NHC ligands around the icosahedral Au13 core. This Au13 nanocluster is highly luminescent, with a quantum yield of 23%. The two enantiomers of the Au13 clusters can be separated by chiral HPLC, and the isolated enantiomers were characterized by circular dichroism spectroscopy. The clusters show remarkable stability, including configurational stability, opening the door to further investigation of the effect of chirality on these clusters.

5.
J Am Chem Soc ; 141(38): 14997-15002, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31497943

RESUMEN

Gold superatom nanoclusters stabilized entirely by N-heterocyclic carbenes (NHCs) and halides are reported. The reduction of well-defined NHC-Au-Cl complexes produces clusters comprised of an icosahedral Au13 core surrounded by a symmetrical arrangement of nine NHCs and three chlorides. X-ray crystallography shows that the clusters are characterized by multiple CH-π and π-π interactions, which rigidify the ligand and likely contribute to the exceptionally high photoluminescent quantum yields observed, up to 16.0%, which is significantly greater than that of the most luminescent ligand-protected Au13 superatom cluster. Density functional theory analysis suggests that clusters are 8-electron superatoms with a wide HOMO-LUMO energy gap of 2 eV. Consistent with this, the clusters have high stability relative to phosphine stabilized clusters.

6.
Inorg Chem ; 57(1): 204-217, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29243923

RESUMEN

Systematic 111Cd solid-state (SS) NMR experiments were performed to correlate X-ray crystallographic data with SSNMR parameters for a set of CdS-based materials, varying from molecular crystals of small complexes [Cd(SPh)4]2- and [Cd4(SPh)10]2- to superlattices of large monodisperse clusters [Cd54S32(SPh)48(dmf)4]4- and 1.9 nm CdS. Methodical data analysis allowed for assigning individual resonances or resonance groups to particular types of cadmium sites residing in different chemical and/or crystallographic environments. For large CdS frameworks, 111Cd resonances were found to form three groups. This result is noteworthy, since for related systems with size polydispersity and variations in composition, such as CdS or CdSe nanoparticles protected with an organic ligand shell, typically only two groups of resonances were observed. The generalized information obtained in this work can be used for the interpretation of 111/113Cd SSNMR data for large CdS clusters and nanoparticles, for which crystal structure analysis remains inaccessible. Comparison of the powder X-ray diffraction patterns for freshly prepared and dried superlattices of large CdS clusters revealed an interesting superstructure rearrangement that was not observed for the smaller frameworks.

7.
J Am Chem Soc ; 139(3): 1129-1144, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28084731

RESUMEN

Superstructures, combining nanoscopic constituents into micrometer-size assemblies, have a great potential for utilization of the size-dependent quantum-confinement properties in multifunctional electronic and optoelectronic devices. Two diverse superstructures of nanoscopic CdSe were prepared using solvothermal conversion of the same cadmium selenophenolate precursor (Me4N)2[Cd(SePh)4]: the first is a superlattice of monodisperse [Cd54Se32(SePh)48(dmf)4]4- nanoclusters; the second is a unique porous CdSe crystal. Nanoclusters were crystallized as cubic crystals (≤0.5 mm in size) after solvothermal treatment at 200 °C in DMF. UV-vis absorption and PLE spectra of the reported nanoclusters are consistent with previously established trends for the known families of tetrahedral CdSe frameworks. In contrast to these, results of PL spectra are rather unexpected, as distinct room temperature emission is observed both in solution and in the solid state. The porous CdSe crystals were isolated as red hexagonal prisms (≤70 µm in size) via solvothermal treatment under similar conditions but with the addition of an alkylammonium salt. The presence of a three-dimensional CdSe network having a coherent crystalline structure inside hexagonal prisms was concluded based on powder X-ray diffraction, selected area electron diffraction and electron microscopy imaging. Self-assembly via oriented attachment of crystalline nanoparticles is discussed as the most probable mechanism of formation.

8.
Chemistry ; 22(13): 4543-50, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26865473

RESUMEN

As a part of efforts to prepare new "metallachalcogenolate" precursors and develop their chemistry for the formation of ternary mixed-metal chalcogenide nanoclusters, two sets of thermally stable, N-heterocyclic carbene metal-chalcogenolate complexes of the general formula [(IPr)Ag-ESiMe3] (IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene; E=S, 1; Se, 2) and [(iPr2-bimy)Cu-ESiMe3]2 (iPr2-bimy=1,3-diisopropylbenzimidazolin-2-ylidene; E=S, 4; Se, 5) are reported. These are prepared from the reaction between the corresponding carbene metal acetate, [(IPr)AgOAc] and [(iPr-bimy)CuOAc] respectively, and E(SiMe3 )2 at low temperature. The reaction of [(IPr)Ag-ESiMe3] 1 with mercury(II) acetate affords the heterometallic complex [{(IPr)AgS}2Hg] 3 containing two (IPr)Ag-S(-) fragments bonded to a central Hg(II), representing a mixed mercury-silver sulfide complex. The reaction of [(iPr2-bimy)Cu-SSiMe3]2, which contains a smaller N-heterocyclic-carbene, with mercuric(II) acetate affords the high nuclearity cluster, [(iPr2-bimy)6Cu10S8Hg3]6. The new N-heterocyclic carbene metal-chalcogenolate complexes 1, 2, 4, 5 and the ternary mixed-metal chalcogenolate complex 3 and cluster 6 have been characterized by multinuclear NMR spectroscopy ((1)H and (13)C), elemental analysis and single-crystal X-ray diffraction.

9.
Dalton Trans ; 44(17): 8267-77, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25851464

RESUMEN

The silylated organochalcogen reagents 1,2-(Me3SiSCH2)2C6H4, and 1,2-(Me3SiSeCH2)2C6H4, were prepared from the corresponding organobromides and lithium trimethylsilanechalcogenolate Li[ESiMe3] (E = S, Se). They have been characterized by multinuclear NMR spectroscopy ((1)H, (13)C, (77)Se) and electrospray ionization mass spectrometry. and react under mild conditions with (1,3-bis(diphenylphosphino)propane)palladium(ii) chloride, [PdCl2(dppp)], to provide the dinuclear organochalcogenolate-bridged complexes [(dppp)2Pd2-µ-κ(2)S-{1,2-(SCH2)2C6H4}]X2, []X2 and [(dppp)2Pd2-µ-κ(2)Se-{1,2-(SeCH2)2C6H4}]X2, []X2 (X = Cl, Br) in good yield, respectively. Furthermore, the tetranuclear palladium complex [(dppp)4Pd4-µ-κ(4)S-{1,2,4,5-(SCH2)4C6H2}]X4, []X4 (X = Cl, Br) can be synthesized from the reaction of the tetrathiotetrasilane 1,2,4,5-(Me3SiSCH2)4C6H2, and [PdCl2(dppp)]. The structures of []X2, []X2 and []X4 were determined by single crystal X-ray diffraction methods. A variety of NMR experiments including two-dimensional homonuclear and heteronuclear correlated spectra were used to probe the solution behaviour of the dinuclear complexes in more detail. These complexes were further characterized by electrospray ionization (ESI) mass spectrometry, and for []X2 and []X2, UV-Vis absorption spectroscopy.

10.
Chemistry ; 17(51): 14394-8, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22102448

RESUMEN

Make way for a superlattice! A crystalline 3D superlattice of 2.3 nm molecular CdS nanoclusters was prepared from a convenient mononuclear cadmium thiophenolate precursor. HRTEM and STEM tomography show highly crystalline repetition of monodisperse frameworks. This combined with elemental and thermogravimetric analyses suggests an approximate formula [Cd(130)S(103)(SPh)(54)].


Asunto(s)
Compuestos de Cadmio/química , Nanoestructuras/química , Compuestos Organometálicos/síntesis química , Sulfuros/química , Cadmio/química , Microscopía Electrónica de Transmisión , Compuestos Organometálicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...