Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Robot AI ; 9: 968305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425848

RESUMEN

Recent advances in deep learning have bolstered our ability to forecast the evolution of dynamical systems, but common neural networks do not adhere to physical laws, critical information that could lead to sounder state predictions. This contribution addresses this concern by proposing a neural network to polynomial (NN-Poly) approximation, a method that furnishes algorithmic guarantees of adhering to physics while retaining state prediction accuracy. To achieve these goals, this article shows how to represent a trained fully connected perceptron, convolution, and recurrent neural networks of various activation functions as Taylor polynomials of arbitrary order. This solution is not only analytic in nature but also least squares optimal. The NN-Poly system identification or state prediction method is evaluated against a single-layer neural network and a polynomial trained on data generated by dynamic systems. Across our test cases, the proposed method maintains minimal root mean-squared state error, requires few parameters to form, and enables model structure for verification and safety. Future work will incorporate safety constraints into state predictions, with this new model structure and test high-dimensional dynamical system data.

2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33323524

RESUMEN

The last five years marked a surge in interest for and use of smart robots, which operate in dynamic and unstructured environments and might interact with humans. We posit that well-validated computer simulation can provide a virtual proving ground that in many cases is instrumental in understanding safely, faster, at lower costs, and more thoroughly how the robots of the future should be designed and controlled for safe operation and improved performance. Against this backdrop, we discuss how simulation can help in robotics, barriers that currently prevent its broad adoption, and potential steps that can eliminate some of these barriers. The points and recommendations made concern the following simulation-in-robotics aspects: simulation of the dynamics of the robot; simulation of the virtual world; simulation of the sensing of this virtual world; simulation of the interaction between the human and the robot; and, in less depth, simulation of the communication between robots. This Perspectives contribution summarizes the points of view that coalesced during a 2018 National Science Foundation/Department of Defense/National Institute for Standards and Technology workshop dedicated to the topic at hand. The meeting brought together participants from a range of organizations, disciplines, and application fields, with expertise at the intersection of robotics, machine learning, and physics-based simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...