Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 163(2): 1071-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23922270

RESUMEN

The chemical identity of the reactive oxygen species (ROS) and its subcellular origin will leave a specific imprint on the transcriptome response. In order to facilitate the appreciation of ROS signaling, we developed a tool that is tuned to qualify this imprint. Transcriptome data from experiments in Arabidopsis (Arabidopsis thaliana) for which the ROS type and organelle origin are known were compiled into indices and made accessible by a Web-based interface called ROSMETER. The ROSMETER algorithm uses a vector-based algorithm to portray the ROS signature for a given transcriptome. The ROSMETER platform was applied to identify the ROS signatures profiles in transcriptomes of senescing plants and of those exposed to abiotic and biotic stresses. An unexpected highly significant ROS transcriptome signature of mitochondrial stress was detected during the early presymptomatic stages of leaf senescence, which was accompanied by the specific oxidation of mitochondria-targeted redox-sensitive green fluorescent protein probe. The ROSMETER analysis of diverse stresses revealed both commonalties and prominent differences between various abiotic stress conditions, such as salt, cold, ultraviolet light, drought, heat, and pathogens. Interestingly, early responses to the various abiotic stresses clustered together, independent of later responses, and exhibited negative correlations to several ROS indices. In general, the ROS transcriptome signature of abiotic stresses showed limited correlation to a few indices, while biotic stresses showed broad correlation with multiple indices. The ROSMETER platform can assist in formulating hypotheses to delineate the role of ROS in plant acclimation to environmental stress conditions and to elucidate the molecular mechanisms of the oxidative stress response in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Biología Computacional/métodos , Especies Reactivas de Oxígeno/metabolismo , Programas Informáticos , Estrés Fisiológico/genética , Transcriptoma/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Estrés Oxidativo/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo
2.
PLoS One ; 8(6): e66511, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776682

RESUMEN

Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Proc Natl Acad Sci U S A ; 109(46): 18839-44, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112163

RESUMEN

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/embriología , Cabeza/embriología , Corazón/embriología , Mesodermo/embriología , Músculo Esquelético/embriología , Miocardio , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados
4.
Plant Physiol ; 156(1): 185-201, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21372201

RESUMEN

Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Transcriptoma , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Clorofila/metabolismo , Cloroplastos/metabolismo , Citoplasma/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Peroxisomas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transducción de Señal
5.
Plant Physiol ; 150(4): 1796-805, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19535475

RESUMEN

Plant hormones regulate growth and responses to environmental change. Hormone action ultimately modifies cellular physiological processes and gene activity. To facilitate transcriptome evaluation of novel mutants and environmental responses, there is a need to rapidly assess the possible contribution of hormone action to changes in the levels of gene transcripts. We developed a vector-based algorithm that rapidly compares lists of transcripts yielding correlation values. The application as described here, called HORMONOMETER, was used to analyze hormone-related activity in a transcriptome of Arabidopsis (Arabidopsis thaliana). The veracity of the resultant analysis was established by comparison with cognate and noncognate hormone transcriptomes as well as with mutants and selected plant-environment interactions. The HORMONOMETER accurately predicted correlations between hormone action and biosynthetic mutants for which transcriptome data are available. A high degree of correlation was detected between many hormones, particularly at early time points of hormone action. Unforeseen complexity was detected in the analysis of mutants and in plant-herbivore interactions. The HORMONOMETER provides a diagnostic tool for evaluating the physiological state of being of the plant from the point of view of transcripts regulated by hormones and yields biological insight into the multiple response components that enable plant adaptation to the environment. A Web-based interface has been developed to facilitate external interfacing with this platform.


Asunto(s)
Algoritmos , Arabidopsis/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Reguladores del Crecimiento de las Plantas/genética , Calibración , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética
6.
Plant Physiol ; 144(3): 1632-41, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17496110

RESUMEN

Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.


Asunto(s)
Empalme Alternativo , Etiquetas de Secuencia Expresada , Genoma de Planta , Genómica/métodos , Magnoliopsida/genética , Algoritmos , Calibración , Bases de Datos de Ácidos Nucleicos , Exones , Intrones , Alineación de Secuencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA