Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 24442, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952911

RESUMEN

Therapeutic interventions targeting viral infections remain a significant challenge for both the medical and scientific communities. While specific antiviral agents have shown success as therapeutics, viral resistance inevitably develops, making many of these approaches ineffective. This inescapable obstacle warrants alternative approaches, such as the targeting of host cellular factors. Respiratory syncytial virus (RSV), the major respiratory pathogen of infants and children worldwide, causes respiratory tract infection ranging from mild upper respiratory tract symptoms to severe life-threatening lower respiratory tract disease. Despite the fact that the molecular biology of the virus, which was originally discovered in 1956, is well described, there is no vaccine or effective antiviral treatment against RSV infection. Here, we demonstrate that targeting host factors, specifically, mTOR signaling, reduces RSV protein production and generation of infectious progeny virus. Further, we show that this approach can be generalizable as inhibition of mTOR kinases reduces coronavirus gene expression, mRNA transcription and protein production. Overall, defining virus replication-dependent host functions may be an effective means to combat viral infections, particularly in the absence of antiviral drugs.


Asunto(s)
Coronavirus/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Virales/metabolismo , Células A549 , Coronavirus/efectos de los fármacos , Coronavirus/genética , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/antagonistas & inhibidores , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Reguladora Asociada a mTOR/antagonistas & inhibidores , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Proteínas Virales/genética
2.
ACS Sens ; 2(11): 1627-1636, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-28994578

RESUMEN

Gold nanoparticle (GNP)-based aggregation assay is simple, fast, and employs a colorimetric detection method. Although previous studies have reported using GNP-based colorimetric assay to detect biological and chemical targets, a mechanistic and quantitative understanding of the assay and effects of GNP parameters on the assay performance is lacking. In this work, we investigated this important aspect of the GNP aggregation assay including effects of GNP concentration and size on the assay performance to detect malarial DNA. Our findings lead us to propose three major competing factors that determine the final assay performance including the nanoparticle aggregation rate, plasmonic coupling strength, and background signal. First, increasing nanoparticle size reduces the Brownian motion and thus aggregation rate, but significantly increases plasmonic coupling strength. We found that larger GNP leads to stronger signal and improved limit of detection (LOD), suggesting a dominating effect of plasmonic coupling strength. Second, higher nanoparticle concentration increases the probability of nanoparticle interactions and thus aggregation rate, but also increases the background extinction signal. We observed that higher GNP concentration leads to stronger signal at high target concentrations due to higher aggregation rate. However, the fact the optimal LOD was found at intermediate GNP concentrations suggests a balance of two competing mechanisms between aggregation rate and signal/background ratio. In summary, our work provides new guidelines to design GNP aggregation-based POC devices to meet the signal and sensitivity needs for infectious disease diagnosis and other applications.


Asunto(s)
Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Oligonucleótidos/análisis , Tamaño de la Partícula , Técnicas Biosensibles , Límite de Detección , Oligonucleótidos/química
3.
PLoS One ; 12(9): e0184318, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28877226

RESUMEN

Respiratory syncytial virus (RSV) is a major respiratory pathogen of infants and young children. Multiple strains of both subgroup A and B viruses circulate during each seasonal epidemic. Genetic heterogeneity among RSV genomes, in large part due to the error prone RNA-dependent, RNA polymerase, could mediate variations in pathogenicity. We evaluated clinical strains of RSV for their ability to induce the innate immune response. Subgroup B viruses were used to infect human pulmonary epithelial cells (A549) and primary monocyte-derived human macrophages (MDM) from a variety of donors. Secretions of IL-6 and CCL5 (RANTES) from infected cells were measured following infection. Host and viral transcriptome expression were assessed using RNA-SEQ technology and the genomic sequences of several clinical isolates were determined. There were dramatic differences in the induction of IL-6 and CCL5 in both A549 cells and MDM infected with a variety of clinical isolates of RSV. Transcriptome analyses revealed that the pattern of innate immune activation in MDM was virus-specific and host-specific. Specifically, viruses that induced high levels of secreted IL-6 and CCL5 tended to induce cellular innate immune pathways whereas viruses that induced relatively low level of IL-6 or CCL5 did not induce or suppressed innate immune gene expression. Activation of the host innate immune response mapped to variations in the RSV G gene and the M2-1 gene. Viral transcriptome data indicated that there was a gradient of transcription across the RSV genome though in some strains, RSV G was the expressed in the highest amounts at late times post-infection. Clinical strains of RSV differ in cytokine/chemokine induction and in induction and suppression of host genes expression suggesting that these viruses may have inherent differences in virulence potential. Identification of the genetic elements responsible for these differences may lead to novel approaches to antiviral agents and vaccines.


Asunto(s)
Inmunidad Innata , Pulmón/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Quimiocina CCL5/inmunología , Células Epiteliales/inmunología , Perfilación de la Expresión Génica , Genoma Viral , Humanos , Interleucina-6/inmunología , Pulmón/virología , Macrófagos/inmunología , Pruebas de Neutralización , Fenotipo , Análisis de Secuencia de ARN , Transcriptoma
4.
Virol J ; 9: 190, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22962966

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is the major respiratory pathogen of infants and young children. During each seasonal epidemic, multiple strains of both subgroup A and B viruses circulate in the community. Like other RNA viruses, RSV genome replication is prone to errors that results in a heterogeneous population of viral strains some of which may possess differences in virulence. We sought to determine whether clinical isolates of RSV differ in their capacity to induce inflammatory cytokines IL-6 and CCL5 (previously known as RANTES [regulated upon activation, normal T-cell expressed and secreted protein]), which are known to be induced in vitro and in vivo in response to RSV, during infection of A549 cells. RESULTS: Screening of subgroup A and B isolates revealed heterogeneity among strains to induce IL-6 and CCL5. We chose two subgroup B strains, New Haven (NH)1067 and NH1125, for further analysis because of their marked differences in cytokine inducing properties and because subgroup B strains, in general, are less genetically heterogeneous as compared to subgroup A strains. At 12 and 24 hours post infection RSV strains, NH1067 and NH1125 differed in their capacity to induce IL-6 by an order of magnitude or more. The concentrations of IL-6 and CCL5 were dependent on the dose of infectious virus and the concentration of these cytokines induced by NH1125 was greater than that of those induced by NH1067 when the multiplicity of infection of NH1067 used was as much as 10-fold higher than that of NH1125. The induction of IL-6 was dependent on viable virus as infection with UV-inactivated virus did not induce IL-6. The difference in IL-6 induction most likely could not be explained by differences in viral replication kinetics. The intracellular level of RSV RNA, as determined by quantitative RT-PCR, was indistinguishable between the 2 strains though the titer of progeny virus produced by NH1125 was greater than that produced by NH1067 at 16, 24 and 36 hours but essentially equal at 48 and 72 hours. Full genome sequencing of the 2 strains revealed 193 polymorphisms and 4 insertions in NH1067 when compared to NH1125 (2 single base insertions in non-coding regions and 2 duplications of 3 and 60 bases in the RSV G gene). Of the polymorphisms, 147 occurred in coding regions and only 30 resulted in amino acid changes in 7 of the RSV genes. CONCLUSIONS: These data suggest that RSV strains may not be homogeneous with regard to pathogenesis or virulence. Identification of the genetic polymorphisms associated with variations in cytokine induction may lead to insights into RSV disease and to the development of effective antiviral agents and vaccines.


Asunto(s)
Quimiocina CCL5/biosíntesis , Células Epiteliales/inmunología , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Interleucina-6/biosíntesis , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/patogenicidad , Línea Celular , Preescolar , Perfilación de la Expresión Génica , Humanos , Lactante , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA