Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769196

RESUMEN

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Asunto(s)
Isquemia Encefálica , Encéfalo , Cistatina C , Vesículas Extracelulares , Ratones Endogámicos C57BL , Sinapsis , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Cistatina C/metabolismo , Sinapsis/metabolismo , Ratones , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Proteómica/métodos , Sinaptosomas/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia , Células Cultivadas , Modelos Animales de Enfermedad
2.
Traffic ; 25(5): e12937, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38777335

RESUMEN

The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.


Asunto(s)
Envejecimiento , Apolipoproteína E2 , Encéfalo , Endosomas , Exosomas , Animales , Exosomas/metabolismo , Endosomas/metabolismo , Envejecimiento/metabolismo , Ratones , Encéfalo/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/genética
3.
Mol Neurodegener ; 19(1): 34, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616258

RESUMEN

BACKGROUND: Hypometabolism tied to mitochondrial dysfunction occurs in the aging brain and in neurodegenerative disorders, including in Alzheimer's disease, in Down syndrome, and in mouse models of these conditions. We have previously shown that mitovesicles, small extracellular vesicles (EVs) of mitochondrial origin, are altered in content and abundance in multiple brain conditions characterized by mitochondrial dysfunction. However, given their recent discovery, it is yet to be explored what mitovesicles regulate and modify, both under physiological conditions and in the diseased brain. In this study, we investigated the effects of mitovesicles on synaptic function, and the molecular players involved. METHODS: Hippocampal slices from wild-type mice were perfused with the three known types of EVs, mitovesicles, microvesicles, or exosomes, isolated from the brain of a mouse model of Down syndrome or of a diploid control and long-term potentiation (LTP) recorded. The role of the monoamine oxidases type B (MAO-B) and type A (MAO-A) in mitovesicle-driven LTP impairments was addressed by treatment of mitovesicles with the irreversible MAO inhibitors pargyline and clorgiline prior to perfusion of the hippocampal slices. RESULTS: Mitovesicles from the brain of the Down syndrome model reduced LTP within minutes of mitovesicle addition. Mitovesicles isolated from control brains did not trigger electrophysiological effects, nor did other types of brain EVs (microvesicles and exosomes) from any genotype tested. Depleting mitovesicles of their MAO-B, but not MAO-A, activity eliminated their ability to alter LTP. CONCLUSIONS: Mitovesicle impairment of LTP is a previously undescribed paracrine-like mechanism by which EVs modulate synaptic activity, demonstrating that mitovesicles are active participants in the propagation of cellular and functional homeostatic changes in the context of neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedades Mitocondriales , Humanos , Animales , Ratones , Espacio Extracelular , Plasticidad Neuronal , Encéfalo , Modelos Animales de Enfermedad , Monoaminooxidasa
5.
Ann N Y Acad Sci ; 1523(1): 24-37, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961472

RESUMEN

Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Humanos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , ARN/metabolismo
6.
J Extracell Vesicles ; 12(1): e12301, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36691887

RESUMEN

Cocaine, an addictive psychostimulant, has a broad mechanism of action, including the induction of a wide range of alterations in brain metabolism and mitochondrial homeostasis. Our group recently identified a subpopulation of non-microvesicular, non-exosomal extracellular vesicles of mitochondrial origin (mitovesicles) and developed a method to isolate mitovesicles from brain parenchyma. We hypothesised that the generation and secretion of mitovesicles is affected by mitochondrial abnormalities induced by chronic cocaine exposure. Mitovesicles from the brain extracellular space of cocaine-administered mice were enlarged and more numerous when compared to controls, supporting a model in which mitovesicle biogenesis is enhanced in the presence of mitochondrial alterations. This interrelationship was confirmed in vitro. Moreover, cocaine affected mitovesicle protein composition, causing a functional alteration in mitovesicle ATP production capacity. These data suggest that mitovesicles are previously unidentified players in the biology of cocaine addiction and that target therapies to fine-tune brain mitovesicle functionality may be beneficial to mitigate the effects of chronic cocaine exposure.


Asunto(s)
Cocaína , Vesículas Extracelulares , Ratones , Animales , Cocaína/metabolismo , Cocaína/farmacología , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo , Biología
7.
Nat Protoc ; 17(11): 2517-2549, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962195

RESUMEN

Extracellular vesicles (EVs) are nanoscale vesicles secreted into the extracellular space by all cell types, including neurons and astrocytes in the brain. EVs play pivotal roles in physiological and pathophysiological processes such as waste removal, cell-to-cell communication and transport of either protective or pathogenic material into the extracellular space. Here we describe a detailed protocol for the reliable and consistent isolation of EVs from both murine and human brains, intended for anyone with basic laboratory experience and performed in a total time of 27 h. The method includes a mild extracellular matrix digestion of the brain tissue, a series of filtration and centrifugation steps to purify EVs and an iodixanol-based high-resolution density step gradient that fractionates different EV populations, including mitovesicles, a newly identified type of EV of mitochondrial origin. We also report detailed downstream protocols for the characterization and analysis of brain EV preparations using nanotrack analysis, electron microscopy and western blotting, as well as for measuring mitovesicular ATP kinetics. Furthermore, we compared this novel iodixanol-based high-resolution density step gradient to the previously described sucrose-based gradient. Although the yield of total EVs recovered was similar, the iodixanol-based gradient better separated distinct EV species as compared with the sucrose-based gradient, including subpopulations of microvesicles, exosomes and mitovesicles. This technique allows quantitative, highly reproducible analyses of brain EV subtypes under normal physiological processes and pathological brain conditions, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.


Asunto(s)
Exosomas , Vesículas Extracelulares , Animales , Ratones , Humanos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Mitocondrias , Sacarosa
8.
Neurochem Res ; 47(11): 3428-3439, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35904699

RESUMEN

Extracellular vesicles (EVs) in the brain play a role in neuronal homeostasis by removing intracellular material and regulating cell-to-cell communication. Given that sex and aging differentially modulate brain networks, we investigated sex-dependent differences in EV levels and content in the brain during aging. EVs were isolated from the brains of 3, 6, 12, 18, and 24 month-old female and male C57BL/6 J mice, and the levels of different EV species determined. While the number of plasma membrane-derived microvesicles and a subset of late endosomes-derived exosomes increased with age in the brain of female mice, no significant changes were seen in males. Mitochondria-derived mitovesicles in the brain increased during aging in both sexes, a change that may reflect aging-dependent alterations in mitochondrial function. These findings reveal enhanced turnover during aging in female brains, suggesting a mechanism for advantageous successful female brain aging and sex-depending different susceptibility to age-related neurodegenerative diseases.


Asunto(s)
Exosomas , Vesículas Extracelulares , Animales , Encéfalo , Femenino , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684879

RESUMEN

Radar systems are mainly used for tracking aircraft, missiles, satellites, and watercraft. In many cases, information regarding the objects detected by a radar system is sent to, and used by, a peripheral consuming system, such as a missile system or a graphical user interface used by an operator. Those systems process the data stream and make real-time operational decisions based on the data received. Given this, the reliability and availability of information provided by radar systems have grown in importance. Although the field of cyber security has been continuously evolving, no prior research has focused on anomaly detection in radar systems. In this paper, we present an unsupervised deep-learning-based method for detecting anomalies in radar system data streams; we take into consideration the fact that a data stream created by a radar system is heterogeneous, i.e., it contains both numerical and categorical features with non-linear and complex relationships. We propose a novel technique that learns the correlation between numerical features and an embedding representation of categorical features in an unsupervised manner. The proposed technique, which allows for the detection of the malicious manipulation of critical fields in a data stream, is complemented by a timing-interval anomaly-detection mechanism proposed for the detection of message-dropping attempts. Real radar system data were used to evaluate the proposed method. Our experiments demonstrated the method's high detection accuracy on a variety of data-stream manipulation attacks (an average detection rate of 88% with a false -alarm rate of 1.59%) and message-dropping attacks (an average detection rate of 92% with a false-alarm rate of 2.2%).

10.
Nat Neurosci ; 25(6): 688-701, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654956

RESUMEN

Autophagy is markedly impaired in Alzheimer's disease (AD). Here we reveal unique autophagy dysregulation within neurons in five AD mouse models in vivo and identify its basis using a neuron-specific transgenic mRFP-eGFP-LC3 probe of autophagy and pH, multiplex confocal imaging and correlative light electron microscopy. Autolysosome acidification declines in neurons well before extracellular amyloid deposition, associated with markedly lowered vATPase activity and build-up of Aß/APP-ßCTF selectively within enlarged de-acidified autolysosomes. In more compromised yet still intact neurons, profuse Aß-positive autophagic vacuoles (AVs) pack into large membrane blebs forming flower-like perikaryal rosettes. This unique pattern, termed PANTHOS (poisonous anthos (flower)), is also present in AD brains. Additional AVs coalesce into peri-nuclear networks of membrane tubules where fibrillar ß-amyloid accumulates intraluminally. Lysosomal membrane permeabilization, cathepsin release and lysosomal cell death ensue, accompanied by microglial invasion. Quantitative analyses confirm that individual neurons exhibiting PANTHOS are the principal source of senile plaques in amyloid precursor protein AD models.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Autofagia , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Placa Amiloide/metabolismo
11.
Neurochem Res ; 47(8): 2263-2277, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35501523

RESUMEN

In multiple neurodevelopmental and neurodegenerative disorders, endosomal changes correlate with changes in exosomes. We examined this linkage in the brain of mice that received cocaine injections for two weeks starting at 2.5 months of age. Cocaine caused a decrease in the number of both neuronal early and late endosomes and exosomes in the brains of male but not female mice. The response to cocaine in ovariectomized females mirrored male, demonstrating that these sex-differences in response to cocaine are driven by hormonal differences. Moreover, cocaine increased the amount of α-synuclein per exosome in the brain of females but did not affect exosomal α-synuclein content in the brain of males, a sex-difference eliminated by ovariectomy. Enhanced packaging of α-synuclein into female brain exosomes with the potential for propagation of pathology throughout the brain suggests a mechanism for the different response of females to chronic cocaine exposure as compared to males.


Asunto(s)
Cocaína , Exosomas , Animales , Cocaína/farmacología , Endosomas , Femenino , Masculino , Ratones , Neuronas/patología , alfa-Sinucleína
12.
Neurochem Res ; 46(11): 2909-2922, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34245421

RESUMEN

Cocaine is a highly addictive stimulant with diverse effects on physiology. Recent studies indicate the involvement of extracellular vesicles (EVs) secreted by neural cells in the cocaine addiction process. It is hypothesized that cocaine affects secretion levels of EVs and their cargos, resulting in modulation of synaptic transmission and plasticity related to addiction physiology and pathology. Lipids present in EVs are important for EV formation and for intercellular lipid exchange that may trigger physiological and pathological responses, including neuroplasticity, neurotoxicity, and neuroinflammation. Specific lipids are highly enriched in EVs compared to parent cells, and recent studies suggest the involvement of various lipids in drug-induced synaptic plasticity during the development and maintenance of addiction processes. Therefore, we examined interstitial small EVs isolated from the brain of mice treated with either saline or cocaine, focusing on the effects of cocaine on the lipid composition of EVs. We demonstrate that 12 days of noncontingent repeated cocaine (10 mg/kg) injections to mice, which induce locomotor sensitization, cause lipid composition changes in brain EVs of male mice as compared with saline-injected controls. The most prominent change is the elevation of GD1a ganglioside in brain EVs of males. However, cocaine does not affect the EV lipid profiles of the brain in female mice. Understanding the relationship between lipid composition in EVs and vulnerability to cocaine addiction may provide insight into novel targets for therapies for addiction.


Asunto(s)
Encéfalo/efectos de los fármacos , Cocaína/toxicidad , Inhibidores de Captación de Dopamina/toxicidad , Vesículas Extracelulares/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Caracteres Sexuales , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Femenino , Inyecciones Intraperitoneales , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Nat Commun ; 12(1): 1731, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741962

RESUMEN

Mutations in KCNC3, which encodes the Kv3.3 potassium channel, cause degeneration of the cerebellum, but exactly how the activity of an ion channel is linked to the survival of cerebellar neurons is not understood. Here, we report that Kv3.3 channels bind and stimulate Tank Binding Kinase 1 (TBK1), an enzyme that controls trafficking of membrane proteins into multivesicular bodies, and that this stimulation is greatly increased by a disease-causing Kv3.3 mutation. TBK1 activity is required for the binding of Kv3.3 to its auxiliary subunit Hax-1, which prevents channel inactivation with depolarization. Hax-1 is also an anti-apoptotic protein required for survival of cerebellar neurons. Overactivation of TBK1 by the mutant channel leads to the loss of Hax-1 by its accumulation in multivesicular bodies and lysosomes, and also stimulates exosome release from neurons. This process is coupled to activation of caspases and increased cell death. Our studies indicate that Kv3.3 channels are directly coupled to TBK1-dependent biochemical pathways that determine the trafficking of cellular constituents and neuronal survival.


Asunto(s)
Supervivencia Celular/fisiología , Cerebelo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/fisiología , Canales de Potasio Shaw/metabolismo , Animales , Exosomas/metabolismo , Femenino , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Mutación , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Canales de Potasio Shaw/genética , Transducción de Señal
14.
Sci Adv ; 7(7)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33579698

RESUMEN

Mitochondrial dysfunction is an established hallmark of aging and neurodegenerative disorders such as Down syndrome (DS) and Alzheimer's disease (AD). Using a high-resolution density gradient separation of extracellular vesicles (EVs) isolated from murine and human DS and diploid control brains, we identify and characterize a previously unknown population of double-membraned EVs containing multiple mitochondrial proteins distinct from previously described EV subtypes, including microvesicles and exosomes. We term these newly identified mitochondria-derived EVs "mitovesicles." We demonstrate that brain-derived mitovesicles contain a specific subset of mitochondrial constituents and that their levels and cargo are altered during pathophysiological processes where mitochondrial dysfunction occurs, including in DS. The development of a method for the selective isolation of mitovesicles paves the way for the characterization in vivo of biological processes connecting EV biology and mitochondria dynamics and for innovative therapeutic and diagnostic strategies.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Exosomas , Vesículas Extracelulares , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Síndrome de Down/genética , Síndrome de Down/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ratones
15.
Cell Rep ; 33(1): 108236, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027652

RESUMEN

The cysteine protease inhibitor Cystatin C (CST3) is highly expressed in the brains of multiple sclerosis (MS) patients and C57BL/6J mice with experimental autoimmune encephalomyelitis (EAE; a model of MS), but its roles in the diseases are unknown. Here, we show that CST3 plays a detrimental function in myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced EAE but only in female animals. Female Cst3 null mice display significantly lower clinical signs of disease compared to wild-type (WT) littermates. This difference is associated with reduced interleukin-6 production and lower expression of key proteins (CD80, CD86, major histocompatibility complex [MHC] II, LC3A/B) involved in antigen processing, presentation, and co-stimulation in antigen-presenting cells (APCs). In contrast, male WT and Cst3-/- mice and cells show no differences in EAE signs or APC function. Further, the sex-dependent effect of CST3 in EAE is sensitive to gonadal hormones. Altogether, we have shown that CST3 has a sex-dependent role in MOG35-55-induced EAE.


Asunto(s)
Cistatina C/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Animales , Femenino , Ratones , Factores Sexuales
16.
FASEB J ; 34(9): 12922-12931, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772431

RESUMEN

Pleiotropic roles are proposed for brain extracellular vesicles (EVs) in the development of Alzheimer's disease (AD). Our previous studies have suggested a beneficial role for EVs in AD, where the endosomal system in vulnerable neurons is compromised, contributing to the removal of accumulated material from neurons. However, the involvement of EVs in propagating AD amyloidosis throughout the brain has been considered because the amyloid-ß precursor protein (APP), APP metabolites, and key APP cleaving enzymes were identified in association with EVs. Here, we undertook to determine whether the secretase machinery is actively processing APP in EVs isolated from the brains of wild-type and APP overexpressing Tg2576 mice. We found that full-length APP is cleaved in EVs incubated in the absence of cells. The resulting metabolites, both α- and ß-APP carboxyl-terminal fragments and APP intracellular domain accumulate in EVs over time and amyloid-ß dimerizes. Thus, EVs contribute to the removal from neurons and transport of APP-derived neurotoxic peptides. While this is potentially a venue for propagation of the pathology throughout the brain, it may contribute to efficient removal of neurotoxic peptides from the brain.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo , Vesículas Extracelulares/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Masculino , Ratones , Ratones Transgénicos , Agregación Patológica de Proteínas
17.
Neurobiol Aging ; 84: 26-32, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31479861

RESUMEN

Down syndrome (DS) is characterized by cognitive deficits throughout the life span and with the development of aging-dependent Alzheimer's type neuropathology, which is related to the triplication of the amyloid ß precursor protein (APP) gene. A dysfunctional endosomal system in neurons is an early characteristic of DS and APP metabolites accumulate in endosomes in DS neurons. We have previously shown enhanced release of exosomes in the brain of DS patients and the mouse model of DS Ts[Rb(12.1716)]2Cje (Ts2), and by DS fibroblasts, as compared with diploid controls. Here, we demonstrate that exosome-enriched extracellular vesicles (hereafter called EVs) isolated from DS and Ts2 brains, and from the culture media of human DS fibroblasts are enriched in APP carboxyl-terminal fragments (APP-CTFs) as compared with diploid controls. Moreover, APP-CTFs levels increase in an age-dependent manner in EVs isolated from the brain of Ts2 mice. The release of APP-CTFs-enriched exosomes may have a pathogenic role by transporting APP-CTFs into naïve neurons and propagating these neurotoxic metabolites, which are also a source of amyloid ß, throughout the brain, but also provides a benefit to DS neurons by shedding APP-CTFs accumulated intracellularly.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Exosomas , Humanos
18.
Sci Rep ; 9(1): 11104, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31367000

RESUMEN

Cystatin C (CysC) is implicated in neuroprotection and repair in the nervous system in response to diverse neurotoxic conditions. In addition to being secreted from cells in a soluble form, CysC is released by cells in association with extracellular vesicles (EVs), including exosomes. We demonstrate that EVs containing CysC protect cultured cells from starvation-induced death. Moreover, while EVs secreted by CysC-deficient cells were not protective, EVs secreted by CysC-deficient cells treated with exogenous human CysC significantly enhanced the survival of the cells. CysC also plays a role in modulating the secretion of EVs, enhancing secretion of EVs by primary cortical neurons and primary cortical smooth muscle cells. Confirming these in vitro findings, higher EV levels were observed in the brain extracellular space of transgenic mice expressing human CysC as compared to littermate controls. Regulation of cell-secreted EV levels and content in the brain is likely to be essential to maintaining normal brain function. We propose that enhanced EV release could rescue the deleterious effects of dysfunction of the endosomal-lysosomal system in neurodegenerative disorders. Moreover, a higher level of CysC-loaded EVs released from cells in the central nervous system has important protective functions, representing a potential therapeutic tool for disorders of the central nervous system.


Asunto(s)
Cistatina C/metabolismo , Vesículas Extracelulares/metabolismo , Neuroprotección/fisiología , Animales , Encéfalo/metabolismo , Células Cultivadas , Exosomas/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
19.
Dev Neurobiol ; 79(7): 656-663, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31278881

RESUMEN

Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716 )]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre-existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high-resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12-month-old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal-exosomal pathway.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Down/metabolismo , Endosomas/metabolismo , Exosomas/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/patología , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Síndrome de Down/patología , Endosomas/patología , Endosomas/ultraestructura , Exosomas/patología , Exosomas/ultraestructura , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas/patología , Neuronas/ultraestructura
20.
FASEB J ; 33(3): 3758-3771, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30481490

RESUMEN

Accumulating evidence suggests that the abnormal aggregation of amyloid-ß (Αß) peptide in Alzheimer's disease (AD) begins intraneuronally, within vesicles of the endosomal-lysosomal pathway where Aß is both generated and degraded. Metalloproteases, including endothelin-converting enzyme (ECE)-1 and -2, reside within these vesicles and normally limit the accumulation of intraneuronally produced Aß. In this study, we determined whether disruption of Aß catabolism could trigger Aß aggregation within neurons and increase the amount of Aß associated with exosomes, small extracellular vesicles derived from endosomal multivesicular bodies. Using cultured cell lines, primary neurons, and organotypic brain slices from an AD mouse model, we found that pharmacological inhibition of the ECE family of metalloproteases increased intracellular and extracellular Aß levels and promoted the intracellular formation of Aß oligomers, a process that did not require internalization of secreted Aß. In vivo, the accumulation of intraneuronal Aß aggregates was accompanied by increased levels of both extracellular and exosome-associated Aß, including oligomeric species. Neuronal exosomes were found to contain both ECE-1 and -2 activities, suggesting that multivesicular bodies are intracellular sites of Aß degradation by these enzymes. ECE dysfunction could lead to the accumulation of intraneuronal Aß aggregates and their subsequent release into the extracellular space via exosomes.-Pacheco-Quinto, J., Clausen, D., Pérez-González, R., Peng, H., Meszaros, A., Eckman, C. B., Levy, E., Eckman, E. A. Intracellular metalloprotease activity controls intraneuronal Aß aggregation and limits secretion of Aß via exosomes.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Exosomas/metabolismo , Metaloendopeptidasas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Endosomas/metabolismo , Enzimas Convertidoras de Endotelina/metabolismo , Espacio Extracelular/metabolismo , Femenino , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Cuerpos Multivesiculares/metabolismo , Neuronas/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...