Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39190553

RESUMEN

The size of subcellular structures must be tightly controlled to maintain normal cell function. Despite its importance, few studies have determined how the size of organelles or other structures is maintained during development, when cells are growing, dividing and rearranging. The developing Drosophila egg chamber is a powerful model in which to study the relative growth rates of subcellular structures. The egg chamber contains a cluster of 16 germline cells, which are connected through intercellular bridges called ring canals. As the egg chamber grows, the germline cells and the ring canals that connect them increase in size. Here, we demonstrate that ring canal size scaling is related to lineage; the largest, 'first-born' ring canals increase in size at a relatively slower rate than ring canals derived from subsequent mitotic divisions. This lineage-based scaling relationship is maintained even if directed transport is reduced, ring canal size is altered, or in egg chambers with twice as many germline cells. Analysis of lines that produce larger or smaller mature eggs reveals that different strategies could be used to alter final egg size.


Asunto(s)
Linaje de la Célula , Células Germinativas , Oogénesis , Animales , Oogénesis/fisiología , Femenino , Células Germinativas/citología , Drosophila melanogaster , Drosophila , Óvulo/citología , Tamaño de la Célula
2.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37645982

RESUMEN

The size of subcellular structures must be tightly controlled to maintain normal cell function; this is especially important when cells are part of developing tissues or organs. Despite its importance, few studies have determined how the size of organelles or other structures is maintained during tissue growth, when cells are growing, dividing, and rearranging. The developing egg chamber is a powerful model in which to study the relative growth rates of subcellular structures. The egg chamber contains a cluster of sixteen germ cells, which are connected through intercellular bridges called ring canals. Ring canals are formed following incomplete cytokinesis after each of four germ cell divisions. As the egg chamber grows, the nurse cells and the ring canals that connect them increase in size. Here, we demonstrate that ring canal size scaling is related to their lineage; the largest, "first born" ring canals grow at a relatively slower rate than ring canals derived from subsequent mitotic divisions. This lineage-based scaling relationship is maintained even if directed transport is reduced, ring canal size is altered, or if the germ cells go through an additional mitotic division. Further, we propose that changes in ring canal scaling could provide a mechanism to alter egg size.

3.
Curr Biol ; 31(15): R959-R962, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34375601

RESUMEN

A new study reveals a role for the spectraplakin Short stop in bridging actin fibers and microtubules, thereby organizing a stable microtubule track for dynein-based transport through intercellular bridges during fruit fly egg development.


Asunto(s)
Proteínas de Drosophila , Actinas/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas , Microtúbulos/metabolismo
4.
J Cell Sci ; 134(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33912915

RESUMEN

Intercellular bridges are essential for fertility in many organisms. The developing fruit fly egg has become the premier model system to study intercellular bridges. During oogenesis, the oocyte is connected to supporting nurse cells by relatively large intercellular bridges, or ring canals. Once formed, the ring canals undergo a 20-fold increase in diameter to support the movement of materials from the nurse cells to the oocyte. Here, we demonstrate a novel role for the conserved SH2/SH3 adaptor protein Dreadlocks (Dock) in regulating ring canal size and structural stability in the germline. Dock localizes at germline ring canals throughout oogenesis. Loss of Dock leads to a significant reduction in ring canal diameter, and overexpression of Dock causes dramatic defects in ring canal structure and nurse cell multinucleation. The SH2 domain of Dock is required for ring canal localization downstream of Src64 (also known as Src64B), and the function of one or more of the SH3 domains is necessary for the strong overexpression phenotype. Genetic interaction and localization studies suggest that Dock promotes WASp-mediated Arp2/3 activation in order to determine ring canal size and regulate growth. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Germinativas , Oogénesis/genética , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas
5.
Dev Biol ; 461(1): 75-85, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945342

RESUMEN

Intercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and growth of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold growth that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and growth. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and growth throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain stability. Our data suggest that nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Forminas/genética , Oogénesis/fisiología , Óvulo/crecimiento & desarrollo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Forminas/metabolismo , Oocitos/crecimiento & desarrollo , Interferencia de ARN , ARN Interferente Pequeño/genética
6.
Dev Biol ; 440(2): 99-112, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29753016

RESUMEN

Intercellular bridges are conserved structures that allow neighboring cells to exchange cytoplasmic material; defects in intercellular bridges can lead to infertility in many organisms. Here, we use the Drosophila egg chamber to study the mechanisms that regulate intercellular bridges. Within the developing egg chamber, the germ cells (15 nurse cells and 1 oocyte) are connected to each other through intercellular bridges called ring canals, which expand over the course of oogenesis to support the transfer of materials from the nurse cells to the oocyte. The ring canals are enriched in actin and actin binding proteins, and many proteins have been identified that localize to the germline ring canals and control their expansion and stability. Here, we demonstrate a novel role for the Ste20 family kinase, Misshapen (Msn), in regulation of the size of the germline ring canals. Msn localizes to ring canals throughout most of oogenesis, and depletion of Msn led to the formation of larger ring canals. Over-expression of Msn decreased ring canal diameter, and expression of a membrane tethered form of Msn caused ring canal detachment and nurse cell fusion. Altering the levels or localization of Msn also led to changes in the actin cytoskeleton and altered the localization of E-cadherin, which suggests that Msn could be indirectly limiting ring canal size by altering the structure or dynamics of the actin cytoskeleton and/or adherens junctions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Células Germinativas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas Contráctiles/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas de Microfilamentos/metabolismo , Oocitos/citología , Oocitos/enzimología , Oogénesis/fisiología , Proteínas Serina-Treonina Quinasas/genética
7.
Dev Cell ; 41(4): 424-437.e4, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28535376

RESUMEN

During cell division, genome inheritance is orchestrated by microtubule attachments formed at kinetochores of mitotic chromosomes. The primary microtubule coupler at the kinetochore, the Ndc80 complex, is regulated by Aurora kinase phosphorylation of its N-terminal tail. Dephosphorylation is proposed to stabilize kinetochore-microtubule attachments by strengthening electrostatic interactions of the tail with the microtubule lattice. Here, we show that removal of the Ndc80 tail, which compromises in vitro microtubule binding, has no effect on kinetochore-microtubule attachments in the Caenorhabditis elegans embryo. Despite this, preventing Aurora phosphorylation of the tail results in prematurely stable attachments that restrain spindle elongation. This premature stabilization requires the conserved microtubule-binding Ska complex, which enriches at attachment sites prior to anaphase onset to dampen chromosome motion. We propose that Ndc80-tail dephosphorylation promotes stabilization of kinetochore-microtubule attachments via the Ska complex and that this mechanism ensures accurate segregation by constraining chromosome motion following biorientation on the spindle.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Anafase , Animales , Cromosomas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Eliminación de Gen , Complejos Multiproteicos/química , Fosforilación , Unión Proteica , Polos del Huso/metabolismo
8.
Methods Mol Biol ; 1478: 215-226, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27730584

RESUMEN

Drosophila egg chamber development depends on a number of dynamic cellular processes that contribute to the final shape and function of the egg. We can gain insight into the mechanisms underlying these events by combining the power of Drosophila genetics and ex vivo live imaging. During developmental stages 1-8, egg chambers rotate around their anterior-posterior axes due to collective migration of the follicular epithelium. This motion is required for the proper elongation of the egg chamber. Here, we describe how to prepare stage 1-8 egg chambers for live imaging. We provide alternate protocols for the use of inverted or upright microscopes and describe ways to stabilize egg chambers to reduce drift during imaging. We discuss the advantages and limitations of these methods to assist the researcher in choosing an appropriate method based on experimental need and available resources.


Asunto(s)
Imagen Óptica/métodos , Ovario/ultraestructura , Técnicas de Cultivo de Tejidos , Cigoto/ultraestructura , Animales , Medios de Cultivo/farmacología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Femenino , Insulina/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/ultraestructura , Oogénesis/genética , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Cigoto/efectos de los fármacos , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
9.
Cell Rep ; 9(6): 2043-55, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25533344

RESUMEN

During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF), the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh) and bone morphogenetic protein (BMP) pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.


Asunto(s)
Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Epitelio/metabolismo , Cadenas alfa de Integrinas/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Ojo Compuesto de los Artrópodos/embriología , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Epitelio/embriología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Cadenas alfa de Integrinas/genética , Morfogénesis
10.
Nat Commun ; 5: 5511, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25413675

RESUMEN

Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a 'molecular corset', in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell's leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis.


Asunto(s)
Proteínas Contráctiles/metabolismo , Drosophila melanogaster/embriología , Oogénesis/genética , Óvulo/crecimiento & desarrollo , Seudópodos/metabolismo , Actinas , Animales , Cadherinas/genética , Proteínas Portadoras/genética , Movimiento Celular , Polaridad Celular , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Proteínas de Microfilamentos/genética , Morfogénesis , Interferencia de ARN , ARN Interferente Pequeño , Factores de Transcripción/genética
11.
J Cell Biol ; 203(3): 505-20, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24217623

RESUMEN

Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring-derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.


Asunto(s)
Caenorhabditis elegans/embriología , División Celular/fisiología , Citocinesis/genética , Citoesqueleto de Actina , Animales , Aurora Quinasa B/metabolismo , Línea Celular , Membrana Celular , Proteínas Contráctiles , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Microtúbulos/genética , Mitosis , Miosina Tipo II , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Septinas/genética , Septinas/metabolismo
12.
J Cell Biol ; 200(6): 721-9, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23509067

RESUMEN

Complex organ shapes arise from the coordinate actions of individual cells. The Drosophila egg chamber is an organ-like structure that lengthens along its anterior-posterior axis as it grows. This morphogenesis depends on an unusual form of planar polarity in the organ's outer epithelial layer, the follicle cells. Interestingly, this epithelium also undergoes a directed migration that causes the egg chamber to rotate around its anterior-posterior axis. However, the functional relationship between planar polarity and migration in this tissue is unknown. We have previously reported that mutations in the Misshapen kinase disrupt follicle cell planar polarity. Here we show that Misshapen's primary role in this system is to promote individual cell motility. Misshapen decreases integrin levels at the basal surface, which may facilitate detachment of each cell's trailing edge. These data provide mechanistic insight into Misshapen's conserved role in cell migration and suggest that follicle cell planar polarity may be an emergent property of individual cell migratory behaviors within the epithelium.


Asunto(s)
Movimiento Celular/fisiología , Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Integrinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliales/citología , Integrinas/genética , Proteínas Serina-Treonina Quinasas/genética
13.
J Cell Biol ; 193(1): 155-69, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21464231

RESUMEN

The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora B(AIR-2) and the centralspindlin component MKLP1(ZEN-4) causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora B(AIR-2)-inhibited embryos, whereas inhibition of Rac does so in MKLP1(ZEN-4)-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Citocinesis , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Huso Acromático/metabolismo , Animales , Aurora Quinasa B , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/ultraestructura , Genotipo , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Mol Biol Cell ; 21(1): 50-62, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19889842

RESUMEN

Signaling by the centrosomal asters and spindle midzone coordinately directs formation of the cytokinetic furrow. Here, we explore the contribution of the asters by analyzing the consequences of altering interaster distance during the first cytokinesis of the Caenorhabditis elegans embryo. Delaying aster separation, by using TPXL-1 depletion to shorten the metaphase spindle, leads to a corresponding delay in furrow formation, but results in a single furrow that ingresses at a normal rate. Preventing aster separation, by simultaneously inhibiting TPXL-1 and Galpha signaling-based cortical forces pulling on the asters, delays furrow formation and leads to the formation of multiple furrows that ingress toward the midzone. Disrupting midzone-based signaling, by depleting conserved midzone complexes, results in a converse phenotype: neither the timing nor the number of furrows is affected, but the rate of furrow ingression is decreased threefold. Simultaneously delaying aster separation and disrupting midzone-based signaling leads to complete failure of furrow formation. Based on these results, we propose that signaling by the separated asters executes two critical functions: 1) it couples furrow formation to anaphase onset by concentrating contractile ring proteins on the equatorial cortex in a midzone-independent manner and 2) it subsequently refines spindle midzone-based signaling to restrict furrowing to a single site.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Citocinesis , Embrión no Mamífero/citología , Anafase , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Contráctiles/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Transducción de Señal , Huso Acromático/metabolismo , Factores de Tiempo
15.
Mol Biol Cell ; 20(4): 1252-67, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19109417

RESUMEN

Kinetochores use the spindle checkpoint to delay anaphase onset until all chromosomes have formed bipolar attachments to spindle microtubules. Here, we use controlled monopolar spindle formation to systematically define the requirements for spindle checkpoint signaling in the Caenorhabditis elegans embryo. The results, when interpreted in light of kinetochore assembly epistasis analysis, indicate that checkpoint activation is coordinately directed by the NDC-80 complex, the Rod/Zwilch/Zw10 complex, and BUB-1-three components independently targeted to the outer kinetochore by the scaffold protein KNL-1. These components orchestrate the integration of a core Mad1(MDF-1)/Mad2(MDF-2)-based signal, with a largely independent Mad3(SAN-1)/BUB-3 pathway. Evidence for independence comes from the fact that subtly elevating Mad2(MDF-2) levels bypasses the requirement for BUB-3 and Mad3(SAN-1) in kinetochore-dependent checkpoint activation. Mad3(SAN-1) does not accumulate at unattached kinetochores and BUB-3 kinetochore localization is independent of Mad2(MDF-2). We discuss the rationale for a bipartite checkpoint mechanism in which a core Mad1(MDF-1)/Mad2(MDF-2) signal generated at kinetochores is integrated with a separate cytoplasmic Mad3(SAN-1)/BUB-3-based pathway.


Asunto(s)
Caenorhabditis elegans/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cinetocoros/metabolismo , Modelos Biológicos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
16.
Science ; 322(5907): 1543-6, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19056985

RESUMEN

During cytokinesis, the guanosine triphosphatase (GTPase) RhoA orchestrates contractile ring assembly and constriction. RhoA signaling is controlled by the central spindle, a set of microtubule bundles that forms between the separating chromosomes. Centralspindlin, a protein complex consisting of the kinesin-6 ZEN-4 and the Rho family GTPase activating protein (GAP) CYK-4, is required for central spindle assembly and cytokinesis in Caenorhabditis elegans. However, the importance of the CYK-4 GAP activity and whether it regulates RhoA remain unclear. We found that two separation-of-function mutations in the GAP domain of CYK-4 lead to cytokinesis defects that mimic centralspindlin loss of function. These defects could be rescued by depletion of the GTPase Rac or its effectors, but not by depletion of RhoA. Thus, inactivation of Rac by centralspindlin functions in parallel with RhoA activation to drive contractile ring constriction during cytokinesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Citocinesis , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Genes de Helminto , Cinesinas/metabolismo , Mutación , Estructura Terciaria de Proteína , Transducción de Señal , Huso Acromático/fisiología , Huso Acromático/ultraestructura , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína RCA2 de Unión a GTP
17.
Dev Cell ; 12(5): 827-35, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17488632

RESUMEN

During cytokinesis, constriction of a cortical contractile ring generates a furrow that partitions one cell into two. The contractile ring contains three filament systems: actin, bipolar myosin II filaments, and septins, GTP-binding hetero-oligomers that polymerize to form a membrane-associated lattice. The contractile ring also contains a potential filament crosslinker, Anillin, that binds all three filament types. Here, we show that the contractile ring possesses an intrinsic symmetry-breaking mechanism that promotes asymmetric furrowing. Asymmetric ingression requires Anillin and the septins, which promote the coalescence of components on one side of the contractile ring, but is insensitive to a 10-fold reduction in myosin II levels. When asymmetry is disrupted, cytokinesis becomes sensitive to partial inhibition of contractility. Thus, asymmetric furrow ingression, a prevalent but previously unexplored feature of cell division in metazoans, is generated by the action of two conserved furrow components and serves a mechanical function that makes cytokinesis robust.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Contráctiles/metabolismo , Citocinesis , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Drosophila melanogaster , Embrión no Mamífero/citología , Miosina Tipo II/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA