Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 445: 138723, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350201

RESUMEN

Oil-in-water-in-oil (O/W/O) double emulsions are considered an advanced oil-structuring technology that can accomplish multi-functions to improve food quality and nutrition. However, this special structure is thermodynamically unstable. This study formulated a model O/W/O double emulsion with standard surfactants, Tween 80 (4 %) and polyglycerol polyricinoleate (PGPR, 5 %), using a traditional two-step method with different homogenization parameters. Cryo-SEM and GC-FID results show that O/W/O emulsions were successfully formulated, and the release rate (RR) of medium-chain triglycerides (MCT) oil from the inner oil to the outer oil phase increased significantly with 2nd homogenization speed increasing, respectively. Interestingly, the RR of all samples reached about 75 % after 2 months of storage, suggesting that O/W/O emulsions were highly unstable. To explain the observed instability, dynamic interfacial tension and interfacial rheology were performed using a drop shape tensiometer. Results demonstrated that unadsorbed Tween 80 in the intermediate aqueous phase was a key factor in markedly decreasing the interfacial properties of the outer PGPR-assembled film by affecting the interfacial rearrangement. Additionally, it was found that the MCT release showed a positive correlation with the Tween 80 concentration, demonstrating that the formed Tween 80 micelles could transport oil molecules to strengthen the emulsion instability. Taken together, this study reveals the destabilization mechanism of model O/W/O surfactants-stabilized emulsions from bulk to interface, providing highly relevant insights for the design of stable O/W/O double emulsions.


Asunto(s)
Polisorbatos , Tensoactivos , Emulsiones/química , Polisorbatos/química , Tensoactivos/química , Agua/química , Tensión Superficial
2.
J Insect Physiol ; 128: 104161, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33188778

RESUMEN

In insects, the identity of body segments is controlled by homeotic genes and the knockdown of these genes during embryogenesis can lead to an abnormal development and/or atypical phenotypes. The main goal of this study was to investigate the involvement of labial (lab), deformed (dfd), sex comb reduced (scr), extradenticle (exd) and proboscipedia (pb) in rostrum development in the Neotropical brown stink bug Euschistus heros, using parental RNAi (pRNAi). To achieve this objective, 10-days-old adult females were first microinjected with double-stranded RNAs (dsRNA) targeting these five genes. Then, the number of eggs laid per female, the percentage of hatched nymphs with normal or abnormal phenotype and target gene silencing were evaluated. Except for the dsDfd-treatment, the number of eggs laid per female per day was not affected by the different dsRNA-treatments compared to the control (dsGFP). However, treatment with either dsLab, dsDfd, dsScr or dsExd caused a strong reduction in egg hatching. The dsExd-treatment caused no apparent change in phenotype in the nymphs while hatched nymphs from the dsDfd, dsScr and dsPb-treatment showed abnormalities in the rostrum. Particularly for the dsPb-treatment, 91% of the offspring displayed a bifurcated rostrum with a leg-like structure. Overall, these results indicate that these five genes are involved in E. heros embryonic development and that the knockdown of dfd, scr and pb leads to an abnormal development of the rostrum. Additionally, this study demonstrates the efficiency of pRNAi in studying genes involved in embryogenesis in E. heros, with clear phenotypes and a strong target gene silencing in the next generation, after treatment of the parent female adult with gene-specific dsRNA.


Asunto(s)
Desarrollo Embrionario/genética , Heterópteros/embriología , Interferencia de ARN , Animales , Genes de Insecto , Heterópteros/genética , Heterópteros/metabolismo , Ninfa/genética , Ninfa/metabolismo
3.
Langmuir ; 31(7): 2065-73, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25133865

RESUMEN

Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion.


Asunto(s)
Gelatina/química , Modelos Químicos , Aceites de Plantas/química , Polisacáridos Bacterianos/química , Agua/química , Emulsiones/química , Geles/química , Aceite de Girasol , Propiedades de Superficie
4.
Chemphyschem ; 15(16): 3435-9, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25123287

RESUMEN

The preparation and characterization of oleogels structured by using a combination of a surface-active and a non-surface-active polysaccharide through an emulsion-templated approach is reported. Specifically, the oleogels were prepared by first formulating a concentrated oil-in-water emulsion, stabilized with a combination of cellulose derivatives and xanthan gum, followed by the selective evaporation of the continuous water phase to drive the network formation, resulting in an oleogel with a unique microstructure and interesting rheological properties, including a high gel strength, G'>4000 Pa, shear sensitivity, good thixotropic recovery, and good thermostability.


Asunto(s)
Emulsiones/química , Polisacáridos/química , Metilcelulosa/química , Aceites/química , Compuestos Orgánicos/química , Reología , Propiedades de Superficie , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA