Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Virol ; 98(5): e0151623, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38567951

RESUMEN

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Macaca fascicularis , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Vacuna contra la Fiebre Amarilla/inmunología , Humanos , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Fiebre Amarilla/virología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Virus de la Fiebre Amarilla/inmunología , Vacunación , Masculino , Femenino , Modelos Animales de Enfermedad , Adulto , Inmunidad Innata , Biología de Sistemas/métodos
2.
Vaccine ; 38(51): 8055-8063, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33187767

RESUMEN

Vaccines prevent infectious diseases, but vaccination is not without risk and adverse events are reported although they are more commonly reported for biologicals than for vaccines. Vaccines and biologicals must undergo vigorous assessment before and after licensure to minimise safety concerns. Potential safety concerns should be identified as early as possible during the development for vaccines and biologicals to minimize investment risk. State-of-the art tools and methods to identify safety concerns and biomarkers that are predictive of clinical outcomes are indispensable. For vaccines and adjuvant formulations, systems biology approaches, supported by single-cell microfluidics applied to translational studies between preclinical and clinical studies, could improve reactogenicity and safety predictions. Next-generation animal models for clinical assessment of injection-site reactions with greater relevance for target human population and criteria to define the level of acceptability of local reactogenicity at vaccine injection sites in pre-clinical animal species should be assessed. Advanced in silico machine-learning-based analytics, species-specific cell or tissue expression, receptor occupancy and kinetics and cell-based assays for functional activity are needed to improve pre-clinical safety assessment of biologicals. The in vitro MIMIC® system could be used to compliment preclinical and clinical studies for assessing immune-toxicity, immunogenicity, immuno-inflammatory and mode of action of biologicals and vaccines. Sanofi Pasteur brought together leading experts in this field to review the state-of-the-art at a unique 'Safety Biomarkers Symposium' on 28-29 November 2017. Here we summarise the proceedings of this symposium. This unique scientific meeting confirmed the importance for institutions and industrial organizations to collaborate to develop tools and methods needed for predicting reactogenicity and immune-inflammatory reactions to vaccines and biologicals, and to develop more accuracy, reliability safety biomarkers, to inform decisions on the attrition or advancement of vaccines and biologicals.


Asunto(s)
Productos Biológicos , Vacunas , Animales , Productos Biológicos/efectos adversos , Biomarcadores , Francia , Humanos , Reproducibilidad de los Resultados , Vacunas/efectos adversos
3.
J Exp Med ; 217(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32644114

RESUMEN

The importance of CD4+ T helper (Th) cells is well appreciated in view of their essential role in the elicitation of antibody and cytotoxic T cell responses. However, the mechanisms that determine the selection of immunodominant epitopes within complex protein antigens remain elusive. Here, we used ex vivo stimulation of memory T cells and screening of naive and memory T cell libraries, combined with T cell cloning and TCR sequencing, to dissect the human naive and memory CD4+ T cell repertoire against the influenza pandemic H1 hemagglutinin (H1-HA). We found that naive CD4+ T cells have a broad repertoire, being able to recognize naturally processed as well as cryptic peptides spanning the whole H1-HA sequence. In contrast, memory Th cells were primarily directed against just a few immunodominant peptides that were readily detected by mass spectrometry-based MHC-II peptidomics and predicted by structural accessibility analysis. Collectively, these findings reveal the presence of a broad repertoire of naive T cells specific for cryptic H1-HA peptides and demonstrate that antigen processing represents a major constraint determining immunodominance.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/inmunología , Epítopos/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Epítopos Inmunodominantes/inmunología , Memoria Inmunológica/inmunología , Virus de la Influenza A/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T Colaboradores-Inductores/inmunología
4.
Front Immunol ; 11: 613496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613536

RESUMEN

Systems vaccinology has been applied to detect signatures of human vaccine induced immunity but its ability, together with high definition in vivo clinical imaging is not established to predict vaccine reactogenicity. Within two European Commission funded high impact programs, BIOVACSAFE and ADITEC, we applied high resolution positron emission tomography/computed tomography (PET/CT) scanning using tissue-specific and non-specific radioligands together with transcriptomic analysis of muscle biopsies in a clinical model systematically and prospectively comparing vaccine-induced immune/inflammatory responses. 109 male participants received a single immunization with licensed preparations of either AS04-adjuvanted hepatitis B virus vaccine (AHBVV); MF59C-adjuvanted (ATIV) or unadjuvanted seasonal trivalent influenza vaccine (STIV); or alum-OMV-meningococcal B protein vaccine (4CMenB), followed by a PET/CT scan (n = 54) or an injection site muscle biopsy (n = 45). Characteristic kinetics was observed with a localized intramuscular focus associated with increased tissue glycolysis at the site of immunization detected by 18F-fluorodeoxyglucose (FDG) PET/CT, peaking after 1-3 days and strongest and most prolonged after 4CMenB, which correlated with clinical experience. Draining lymph node activation peaked between days 3-5 and was most prominent after ATIV. Well defined uptake of the immune cell-binding radioligand 11C-PBR28 was observed in muscle lesions and draining lymph nodes. Kinetics of muscle gene expression module upregulation reflected those seen previously in preclinical models with a very early (~6hrs) upregulation of monocyte-, TLR- and cytokine/chemokine-associated modules after AHBVV, in contrast to a response on day 3 after ATIV, which was bracketed by whole blood responses on day 1 as antigen presenting, inflammatory and innate immune cells trafficked to the site of immunization, and on day 5 associated with activated CD4+ T cells. These observations confirm the use of PET/CT, including potentially tissue-, cell-, or cytokine/chemokine-specific radioligands, is a safe and ethical quantitative technique to compare candidate vaccine formulations and could be safely combined with biopsy to guide efficient collection of samples for integrated whole blood and tissue systems vaccinology in small-scale but intensive human clinical models of immunization and to accelerate clinical development and optimisation of vaccine candidates, adjuvants, and formulations.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Ganglios Linfáticos/metabolismo , Músculos/metabolismo , Transcriptoma/inmunología , Vacunas/metabolismo , Adolescente , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/inmunología , Femenino , Humanos , Inmunización/métodos , Cinética , Ganglios Linfáticos/inmunología , Masculino , Persona de Mediana Edad , Músculos/inmunología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Vacunación/métodos , Vacunas/inmunología , Adulto Joven
5.
Lancet HIV ; 6(4): e230-e239, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30885692

RESUMEN

BACKGROUND: A preventive vaccine for HIV is a crucial public health need; adeno-associated virus (AAV)-mediated antibody gene delivery could be an alternative to immunisation to induce sustained expression of neutralising antibodies to prevent HIV. We assessed safety and tolerability of rAAV1-PG9DP, a recombinant AAV1 vector encoding the gene for PG9, a broadly neutralising antibody against HIV. METHODS: This first-in-human, proof-of-concept, double-blind, phase 1, randomised, placebo-controlled, dose-escalation trial was done at one clinical research centre in the UK. Healthy men aged 18-45 years without HIV infection were randomly assigned to receive intramuscular injection with rAAV1-PG9DP or placebo in the deltoid or quadriceps in one of four dose-escalating cohorts (group A, 4 × 1012 vector genomes; group B, 4 × 1013 vector genomes; group C, 8 × 1013 vector genomes; and group D, 1·2 × 1014 vector genomes). Volunteers were followed up for 48 weeks. The primary objective was to assess safety and tolerability. A secondary objective was to assess PG9 expression in serum and related HIV neutralisation activity. All volunteers were included in primary and safety analyses. The trial is complete and is registered with ClinicalTrials.gov, number NCT01937455. FINDINGS: Between Jan 30, 2014, and Feb 28, 2017, 111 volunteers were screened for eligibility. 21 volunteers were eligible and provided consent, and all 21 completed 48 weeks of follow-up. Reactogenicity was generally mild or moderate and resolved without intervention. No probably or definitely related adverse events or serious adverse events were recorded. We detected PG9 by HIV neutralisation in the serum of four volunteers, and by RT-PCR in muscle biopsy samples from four volunteers. We did not detect PG9 by ELISA in serum. PG9 anti-drug antibody was present in ten volunteers in the higher dose groups. Both anti-AAV1 antibodies and AAV1-specific T-cell responses were detected. INTERPRETATION: Future studies should explore higher doses of AAV, alternative AAV serotypes and gene expression cassettes, or other broadly neutralising HIV antibodies. FUNDING: International AIDS Vaccine Initiative, United States Agency for International Development, Bill & Melinda Gates Foundation, US National Institutes of Health.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/prevención & control , Adolescente , Adulto , Anticuerpos Neutralizantes/genética , Método Doble Ciego , Estudios de Seguimiento , Terapia Genética/efectos adversos , Anticuerpos Anti-VIH/genética , Voluntarios Sanos , Humanos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Placebos/administración & dosificación , Proteínas Recombinantes/sangre , Proteínas Recombinantes/genética , Reino Unido , Adulto Joven
6.
J Infect Dis ; 219(8): 1187-1197, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30407513

RESUMEN

BACKGROUND: The 2014 West African outbreak of Ebola virus disease highlighted the urgent need to develop an effective Ebola vaccine. METHODS: We undertook 2 phase 1 studies assessing safety and immunogenicity of the viral vector modified vaccinia Ankara virus vectored Ebola Zaire vaccine (MVA-EBO-Z), manufactured rapidly on a new duck cell line either alone or in a heterologous prime-boost regimen with recombinant chimpanzee adenovirus type 3 vectored Ebola Zaire vaccine (ChAd3-EBO-Z) followed by MVA-EBO-Z. Adult volunteers in the United Kingdom (n = 38) and Senegal (n = 40) were vaccinated and an accelerated 1-week prime-boost regimen was assessed in Senegal. Safety was assessed by active and passive collection of local and systemic adverse events. RESULTS: The standard and accelerated heterologous prime-boost regimens were well-tolerated and elicited potent cellular and humoral immunogenicity in the United Kingdom and Senegal, but vaccine-induced antibody responses were significantly lower in Senegal. Cellular immune responses measured by flow cytometry were significantly greater in African vaccinees receiving ChAd3 and MVA vaccines in the same rather than the contralateral limb. CONCLUSIONS: MVA biomanufactured on an immortalized duck cell line shows potential for very large-scale manufacturing with lower cost of goods. This first trial of MVA-EBO-Z in humans encourages further testing in phase 2 studies, with the 1-week prime-boost interval regimen appearing to be particularly suitable for outbreak control. CLINICAL TRIALS REGISTRATION: NCT02451891; NCT02485912.


Asunto(s)
Vacunas contra el Virus del Ébola/farmacología , Adolescente , Adulto , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Femenino , Humanos , Esquemas de Inmunización , Inmunización Secundaria/efectos adversos , Inmunización Secundaria/métodos , Masculino , Persona de Mediana Edad , Senegal , Reino Unido , Adulto Joven
7.
Sci Rep ; 9(1): 20362, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31889148

RESUMEN

Biomarkers predictive of inflammatory events post-vaccination could accelerate vaccine development. Within the BIOVACSAFE framework, we conducted three identically designed, placebo-controlled inpatient/outpatient clinical studies (NCT01765413/NCT01771354/NCT01771367). Six antiviral vaccination strategies were evaluated to generate training data-sets of pre-/post-vaccination vital signs, blood changes and whole-blood gene transcripts, and to identify putative biomarkers of early inflammation/reactogenicity that could guide the design of subsequent focused confirmatory studies. Healthy adults (N = 123; 20-21/group) received one immunization at Day (D)0. Alum-adjuvanted hepatitis B vaccine elicited vital signs and inflammatory (CRP/innate cells) responses that were similar between primed/naive vaccinees, and low-level gene responses. MF59-adjuvanted trivalent influenza vaccine (ATIV) induced distinct physiological (temperature/heart rate/reactogenicity) response-patterns not seen with non-adjuvanted TIV or with the other vaccines. ATIV also elicited robust early (D1) activation of IFN-related genes (associated with serum IP-10 levels) and innate-cell-related genes, and changes in monocyte/neutrophil/lymphocyte counts, while TIV elicited similar but lower responses. Due to viral replication kinetics, innate gene activation by live yellow-fever or varicella-zoster virus (YFV/VZV) vaccines was more suspended, with early IFN-associated responses in naïve YFV-vaccine recipients but not in primed VZV-vaccine recipients. Inflammatory responses (physiological/serum markers, innate-signaling transcripts) are therefore a function of the vaccine type/composition and presence/absence of immune memory. The data reported here have guided the design of confirmatory Phase IV trials using ATIV to provide tools to identify inflammatory or reactogenicity biomarkers.


Asunto(s)
Biomarcadores , Vacunas Virales/efectos adversos , Proteínas de Fase Aguda , Adulto , Citocinas/sangre , Femenino , Pruebas Hematológicas , Humanos , Masculino , Evaluación de Síntomas , Transcripción Genética , Vacunación/efectos adversos , Vacunación/métodos , Vacunas Virales/inmunología , Signos Vitales , Adulto Joven
8.
NPJ Vaccines ; 3: 49, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323956

RESUMEN

We assessed a combination multi-stage malaria vaccine schedule in which RTS,S/AS01B was given concomitantly with viral vectors expressing multiple-epitope thrombospondin-related adhesion protein (ME-TRAP) in a 0-month, 1-month, and 2-month schedule. RTS,S/AS01B was given as either three full doses or with a fractional (1/5th) third dose. Efficacy was assessed by controlled human malaria infection (CHMI). Safety and immunogenicity of the vaccine regimen was also assessed. Forty-one malaria-naive adults received RTS,S/AS01B at 0, 4 and 8 weeks, either alone (Groups 1 and 2) or with ChAd63 ME-TRAP at week 0, and modified vaccinia Ankara (MVA) ME-TRAP at weeks 4 and 8 (Groups 3 and 4). Groups 2 and 4 received a fractional (1/5th) dose of RTS,S/AS01B at week 8. CHMI was delivered by mosquito bite 11 weeks after first vaccination. Vaccine efficacy was 6/8 (75%), 8/9 (88.9%), 6/10 (60%), and 5/9 (55.6%) of subjects in Groups 1, 2, 3, and 4, respectively. Immunological analysis indicated significant reductions in anti-circumsporozoite protein antibodies and TRAP-specific T cells at CHMI in the combination vaccine groups. This reduced immunogenicity was only observed after concomitant administration of the third dose of RTS,S/AS01B with the second dose of MVA ME-TRAP. The second dose of the MVA vector with a four-week interval caused significantly higher anti-vector immunity than the first and may have been the cause of immunological interference. Co-administration of ChAd63/MVA ME-TRAP with RTS,S/AS01B led to reduced immunogenicity and efficacy, indicating the need for evaluation of alternative schedules or immunization sites in attempts to generate optimal efficacy.

9.
Front Immunol ; 8: 1563, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204145

RESUMEN

Vaccinology aims to understand what factors drive vaccine-induced immunity and protection. For many vaccines, however, the mechanisms underlying immunity and protection remain incompletely characterized at best, and except for neutralizing antibodies induced by viral vaccines, few correlates of protection exist. Recent omics and systems biology big data platforms have yielded valuable insights in these areas, particularly for viral vaccines, but in the case of more complex vaccines against bacterial infectious diseases, understanding is fragmented and limited. To fill this gap, the EC supported ADITEC project (http://www.aditecproject.eu/; http://stm.sciencemag.org/content/4/128/128cm4.full) featured a work package on "Molecular signatures of immunity and immunogenicity," aimed to identify key molecular mechanisms of innate and adaptive immunity during effector and memory stages of immune responses following vaccination. Specifically, technologies were developed to assess the human immune response to vaccination and infection at the level of the transcriptomic and proteomic response, T-cell and B-cell memory formation, cellular trafficking, and key molecular pathways of innate immunity, with emphasis on underlying mechanisms of protective immunity. This work intersected with other efforts in the ADITEC project. This review summarizes the main achievements of the work package.

10.
EBioMedicine ; 22: 164-172, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28735965

RESUMEN

BACKGROUND: Approximately 164,000 deaths yearly are due to shigellosis, primarily in developing countries. Thus, a safe and affordable Shigella vaccine is an important public health priority. The GSK Vaccines Institute for Global Health (GVGH) developed a candidate Shigella sonnei vaccine (1790GAHB) using the Generalized Modules for Membrane Antigens (GMMA) technology. The paper reports results of 1790GAHB Phase 1 studies in healthy European adults. METHODS: To evaluate the safety and immunogenicity profiles of 1790GAHB, we performed two parallel, phase 1, observer-blind, randomized, placebo-controlled, dose escalation studies in France ("study 1") and the United Kingdom ("study 2") between February 2014 and April 2015 (ClinicalTrials.gov, number NCT02017899 and NCT02034500, respectively) in 18-45years old subjects (50 in study 1, 52 in study 2). Increasing doses of Alhydrogel adsorbed 1790, expressed by both O Antigen (OAg) and protein quantity, or placebo were given either by intramuscular route (0.059/1, 0.29/5, 1.5/25, 2.9/50, 5.9/100µg of OAg/µg of protein; study 1) or by intradermal (ID), intranasal (IN) or intramuscular (IM) route of immunization (0.0059/0.1, 0.059/1, 0.59/10µg ID, 0.29/5, 1.2/20, 4.8/80µg IN and 0.29/5µg IM, respectively; study 2). In absence of serologic correlates of protection for Shigella sonnei, vaccine induced immunogenicity was compared to anti-LPS antibody in a population naturally exposed to S. sonnei. FINDINGS: Vaccines were well tolerated in both studies and no death or vaccine related serious adverse events were reported. In study 1, doses ≥1.5/25µg elicited serum IgG median antibody greater than median level in convalescent subjects after the first dose. No vaccine group in study 2 achieved median antibody greater than the median convalescent antibody. INTERPRETATION: Intramuscularly administered Shigella sonnei GMMA vaccine is well tolerated, up to and including 5.9/100µg and induces antibody to the OAg of at least the same magnitude of those observed following natural exposure to the pathogen. Vaccine administered by ID or IN, although well tolerated, is poorly immunogenic at the doses delivered. The data support the use of the GMMA technology for the development of intramuscular multivalent Shigella vaccines.


Asunto(s)
Vacunas contra la Shigella/administración & dosificación , Vacunas contra la Shigella/inmunología , Shigella sonnei/inmunología , Administración Intranasal , Adulto , Europa (Continente) , Femenino , Voluntarios Sanos , Humanos , Inyecciones Intradérmicas , Inyecciones Intramusculares , Masculino , Vacunas contra la Shigella/efectos adversos , Adulto Joven
11.
Cytometry A ; 91(10): 969-982, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28444973

RESUMEN

Comparative immune-profiling of innate responses in humans and non-human primates is important to understand the pathogenesis of infectious and chronic inflammatory diseases as well as for the preclinical development of vaccines and immune therapies. However, direct comparisons of the two species are rare and were never performed using mass cytometry. Here, whole-blood-derived leukocytes from healthy humans and cynomolgus macaques were analyzed with mass cytometry. Two similar panels of around 30 monoclonal antibodies targeting human markers associated with innate myeloid cells to stain fixed human and macaque leukocytes were constructed. To compare the circulating innate cells from the two primate species, an analysis pipeline combining a clustering analysis by the Spanning-tree Progression Analysis of Density-normalized Events (SPADE) algorithm with a two-step hierarchical clustering of cells nodes and markers was used. Identical SPADE settings were applied to both datasets, except for the 20 clustering markers which slightly differed. A correlation analysis designed to compare the phenotypes of human and macaque cell nodes and based on 16 markers, including 15 shared clustering markers and CD19 for humans or CD20 for macaques, revealed similarities and differences between staining patterns. This study unique by the number of individuals (26 humans and 5 macaques) and the use of mass cytometry certainly contributes to better assess the advantages and limits of the use of non-human primates in preclinical research. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Inmunidad Innata/inmunología , Leucocitos/citología , Leucocitos/inmunología , Células Mieloides/citología , Células Mieloides/inmunología , Adulto , Animales , Biomarcadores/metabolismo , Análisis por Conglomerados , Femenino , Citometría de Flujo , Humanos , Leucocitos/metabolismo , Macaca , Masculino , Células Mieloides/metabolismo , Fenotipo
12.
Front Immunol ; 8: 149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275375

RESUMEN

There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant-aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen.

13.
Vaccine ; 34(32): 3697-701, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27055022

RESUMEN

BACKGROUND: New human immunodeficiency virus (HIV) infections continue to occur worldwide. Despite previous failures, there is renewed optimism about developing an efficacious HIV prophylactic vaccine following the 31.2% vaccine efficacy (modified intention to treat analysis) achieved in the RV-144 trial. Intense efforts at characterising the immune responses in the trial participants who appeared to gain some protection from the candidate vaccine are ongoing to delineate correlates of protection. However, the characteristics of a vaccine suitable for programmatic introduction in high prevalence areas remain undefined. AIMS: We set out to ascertain the vaccination policies and strategies that policy makers involved in vaccine introductions would advise were a candidate HIV vaccine to become available. METHODS: Structured questionnaires in both English and French were self-administered to consenting policy makers such as members of National Immunisation Technical Advisory Groups. Members from three out of the six WHO regional groups were purposively reached for their responses. RESULTS: Thirty-seven key opinion leaders were approached through self-administered questionnaires delivered by e-mail or in person. Nine responses were received, representing a 24.3% response rate. The responses received were from three [Africa (6), Americas (1) and Europe (2)] out of the six WHO regions. All respondents would prioritise the vaccination of commercial sex workers over other risk groups if there was an efficacious HIV vaccine. Vaccine efficacy was considered to be the most important factor, ahead of vaccine safety and cost, in determining the acceptability of a new prophylactic HIV vaccine. CONCLUSIONS: It is expected that the first generation HIV vaccines may be modestly efficacious. However, even a modestly efficacious vaccine might curtail the spread of HIV if universal or near-universal coverage is achieved. It is important to anticipate policy discussions which would influence how rapidly an HIV vaccine would be rolled-out programmatically to achieve maximum impact.


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Política de Salud , Vacunación/legislación & jurisprudencia , Comités Consultivos , Infecciones por VIH/prevención & control , Humanos , Trabajadores Sexuales , Encuestas y Cuestionarios
14.
NPJ Syst Biol Appl ; 2: 16032, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28725480

RESUMEN

Systems Biology has established numerous approaches for mechanistic modeling of molecular networks in the cell and a legacy of models. The current frontier is the integration of models expressed in different formalisms to address the multi-scale biological system organization challenge. We present MUFINS (MUlti-Formalism Interaction Network Simulator) software, implementing a unique set of approaches for multi-formalism simulation of interaction networks. We extend the constraint-based modeling (CBM) framework by incorporation of linear inhibition constraints, enabling for the first time linear modeling of networks simultaneously describing gene regulation, signaling and whole-cell metabolism at steady state. We present a use case where a logical hypergraph model of a regulatory network is expressed by linear constraints and integrated with a Genome-Scale Metabolic Network (GSMN) of mouse macrophage. We experimentally validate predictions, demonstrating application of our software in an iterative cycle of hypothesis generation, validation and model refinement. MUFINS incorporates an extended version of our Quasi-Steady State Petri Net approach to integrate dynamic models with CBM, which we demonstrate through a dynamic model of cortisol signaling integrated with the human Recon2 GSMN and a model of nutrient dynamics in physiological compartments. Finally, we implement a number of methods for deriving metabolic states from ~omics data, including our new variant of the iMAT congruency approach. We compare our approach with iMAT through the analysis of 262 individual tumor transcriptomes, recovering features of metabolic reprogramming in cancer. The software provides graphics user interface with network visualization, which facilitates use by researchers who are not experienced in coding and mathematical modeling environments.

15.
J Immunol Res ; 2015: 909406, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26380327

RESUMEN

Advances in "omics" technology (transcriptomics, proteomics, metabolomics, genomics/epigenomics, etc.) allied with statistical and bioinformatics tools are providing insights into basic mechanisms of vaccine and adjuvant efficacy or inflammation/reactogenicity. Predictive biomarkers of relatively frequent inflammatory reactogenicity may be identified in systems vaccinology studies involving tens or hundreds of participants and used to screen new vaccines and adjuvants in in vitro, ex vivo, animal, or human models. The identification of rare events (such as those observed with initial rotavirus vaccine or suspected autoimmune complications) will require interrogation of large data sets and population-based research before application of systems vaccinology. The Innovative Medicine Initiative funded public-private project BIOVACSAFE is an initial attempt to systematically identify biomarkers of relatively common inflammatory events after adjuvanted immunization using human, animal, and population-based models. Discriminatory profiles or biomarkers are being identified, which require validation in large trials involving thousands of participants before they can be generalized. Ultimately, it is to be hoped that the knowledge gained from such initiatives will provide tools to the industry, academia, and regulators to select optimal noninflammatory but immunogenic and effective vaccine adjuvant combinations, thereby shortening product development cycles and identifying unsuitable vaccine candidates that would fail in expensive late stage development or postmarketing.


Asunto(s)
Adyuvantes Inmunológicos/efectos adversos , Inflamación/etiología , Vacunas/efectos adversos , Animales , Biomarcadores , Bases de Datos Factuales , Predisposición Genética a la Enfermedad , Humanos , Inmunidad Innata , Inmunización , Inflamación/metabolismo , Modelos Animales , Vacunas/administración & dosificación , Vacunas/inmunología
17.
Lancet Oncol ; 16(7): 775-86, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26071347

RESUMEN

BACKGROUND: There is some evidence to suggest that one or two doses of the HPV vaccine provides similar protection to the three-dose regimen. The main aim of the study was to ascertain HPV-16/18 vaccine efficacy in both full and naive cohorts and to explore protection conferred against non-vaccine HPV types, by number of doses received. METHODS: Summary data from the Costa Rica Vaccine Trial (CVT; NCT00128661) and ~the PATRICIA trial (NCT001226810), two phase 3, double-blind, randomised controlled clinical trials of the HPV-16/18 AS04-adjuvanted vaccine in young women, were combined in a post-hoc analysis (GlaxoSmithKline [GSK] e-track number 202142) to investigate the efficacy of fewer than three doses of the HPV-16/18 vaccine after 4 years of follow-up. Women were randomly assigned to receive three doses of the HPV-16/18 vaccine or to a control vaccine; yet, some received fewer doses. After exclusion of women with less than 12 months of follow-up or those who were HPV-16/18 DNA-positive at enrolment (for the HPV-16/18 endpoint), we calculated vaccine efficacy against one-time detection of incident HPV infections after three, two, and one dose(s). The primary study endpoint was one-time detection of first incident HPV-16/18 infections accumulated during the follow-up phase. FINDINGS: We assessed vaccine efficacy against incident HPV-16/18 infection in the modified total vaccinated cohort (22 327 received three doses, 1185 two doses, 543 one dose). Vaccine efficacy against incident HPV-16/18 infections for three doses was 77·0% (95% CI 74·7-79·1), two doses was 76·0% (62·0-85·3), and one dose was 85·7% (70·7-93·7). Vaccine efficacy against incident HPV-31/33/45 infections for three doses was 59·7% (56·0-63·0), two doses was 37·7% (12·4-55·9), and one dose was 36·6% (-5·4 to 62·2). Vaccine efficacy against incident HPV-16/18 infection for two-dose women who received their second dose at 1 month was 75·3% (54·2-87·5) and 82·6% (42·3-96·1) for those who received the second dose at 6 months (CVT data only). Vaccine efficacy against HPV-31/33/45 for two-dose women who received their second dose at 6 months (68·1%, 27·0-87·0; CVT data only), but not those receiving it at one month (10·1%, -42·0 to 43·3), was similar to the three-dose group. INTERPRETATION: 4 years after vaccination of women aged 15-25 years, one and two doses of the HPV-16/18 vaccine seem to protect against cervical HPV-16/18 infections, similar to the protection provided by the three-dose schedule. Two doses separated by 6 months additionally provided some cross-protection. These data argue for a direct assessment of one-dose efficacy of the HPV-16/18 vaccine. FUNDING: US National Cancer Institute, National Institutes of Health Office of Research on Women's Health, and Ministry of Health of Costa Rica (CVT); GlaxoSmithKline Biologicals SA (PATRICIA).


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/administración & dosificación , Displasia del Cuello del Útero/prevención & control , Displasia del Cuello del Útero/virología , Adolescente , Adulto , Factores de Edad , Costa Rica , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Femenino , Estudios de Seguimiento , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 16/aislamiento & purificación , Papillomavirus Humano 18/inmunología , Papillomavirus Humano 18/aislamiento & purificación , Humanos , Medición de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos , Vacunación/métodos , Adulto Joven
19.
Clin Vaccine Immunol ; 22(2): 235-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25540273

RESUMEN

The efficacy of the human papillomavirus type 16 (HPV-16)/HPV-18 AS04-adjuvanted vaccine against cervical infections with HPV in the Papilloma Trial against Cancer in Young Adults (PATRICIA) was evaluated using a combination of the broad-spectrum L1-based SPF10 PCR-DNA enzyme immunoassay (DEIA)/line probe assay (LiPA25) system with type-specific PCRs for HPV-16 and -18. Broad-spectrum PCR assays may underestimate the presence of HPV genotypes present at relatively low concentrations in multiple infections, due to competition between genotypes. Therefore, samples were retrospectively reanalyzed using a testing algorithm incorporating the SPF10 PCR-DEIA/LiPA25 plus a novel E6-based multiplex type-specific PCR and reverse hybridization assay (MPTS12 RHA), which permits detection of a panel of nine oncogenic HPV genotypes (types 16, 18, 31, 33, 35, 45, 52, 58, and 59). For the vaccine against HPV types 16 and 18, there was no major impact on estimates of vaccine efficacy (VE) for incident or 6-month or 12-month persistent infections when the MPTS12 RHA was included in the testing algorithm versus estimates with the protocol-specified algorithm. However, the alternative testing algorithm showed greater sensitivity than the protocol-specified algorithm for detection of some nonvaccine oncogenic HPV types. More cases were gained in the control group than in the vaccine group, leading to higher point estimates of VE for 6-month and 12-month persistent infections for the nonvaccine oncogenic types included in the MPTS12 RHA assay (types 31, 33, 35, 45, 52, 58, and 59). This post hoc analysis indicates that the per-protocol testing algorithm used in PATRICIA underestimated the VE against some nonvaccine oncogenic HPV types and that the choice of the HPV DNA testing methodology is important for the evaluation of VE in clinical trials. (This study has been registered at ClinicalTrials.gov under registration no. NCT00122681.).


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Hidróxido de Aluminio/administración & dosificación , Lípido A/análogos & derivados , Papillomaviridae/clasificación , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/inmunología , Adolescente , Adulto , ADN Viral/genética , Femenino , Genotipo , Humanos , Lípido A/administración & dosificación , Papillomaviridae/genética , Infecciones por Papillomavirus/prevención & control , Reacción en Cadena de la Polimerasa , Resultado del Tratamiento , Adulto Joven
20.
Lancet ; 384(9960): 2123-31, 2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25145775

RESUMEN

BACKGROUND: Meningococcal conjugate vaccines protect individuals directly, but can also confer herd protection by interrupting carriage transmission. We assessed the effects of meningococcal quadrivalent glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in 18-24-year-olds. METHODS: In this phase 3, observer-blind, randomised controlled trial, university students aged 18-24 years from ten sites in England were randomly assigned (1:1:1, block size of three) to receive two doses 1 month apart of Japanese Encephalitis vaccine (controls), 4CMenB, or one dose of MenACWY-CRM then placebo. Participants were randomised with a validated computer-generated random allocation list. Participants and outcome-assessors were masked to the treatment group. Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over 1 year. Primary outcomes were cross-sectional carriage 1 month after each vaccine course. Secondary outcomes included comparisons of carriage at any timepoint after primary analysis until study termination. Reactogenicity and adverse events were monitored throughout the study. Analysis was done on the modified intention-to-treat population, which included all enrolled participants who received a study vaccination and provided at least one assessable swab after baseline. This trial is registered with ClinicalTrials.gov, registration number NCT01214850. FINDINGS: Between Sept 21 and Dec 21, 2010, 2954 participants were randomly assigned (987 assigned to control [984 analysed], 979 assigned to 4CMenB [974 analysed], 988 assigned to MenACWY-CRM [983 analysed]); 33% of the 4CMenB group, 34% of the MenACWY-CRM group, and 31% of the control group were positive for meningococcal carriage at study entry. By 1 month, there was no significant difference in carriage between controls and 4CMenB (odds ratio 1·2, 95% CI 0·8-1·7) or MenACWY-CRM (0·9, [0·6-1·3]) groups. From 3 months after dose two, 4CMenB vaccination resulted in significantly lower carriage of any meningococcal strain (18·2% [95% CI 3·4-30·8] carriage reduction), capsular groups BCWY (26·6% [10·5-39·9] carriage reduction), capsular groups CWY (29·6% [8·1-46·0] carriage reduction), and serogroups CWY (28·5% [2·8-47·5] carriage reduction) compared with control vaccination. Significantly lower carriage rates were also noted in the MenACWY-CRM group compared with controls: 39·0% (95% CI 17·3-55·0) carriage reduction for serogroup Y and 36·2% (15·6-51·7) carriage reduction for serogroup CWY. Study vaccines were generally well tolerated, with increased rates of transient local injection pain and myalgia in the 4CMenB group. No safety concerns were identified. INTERPRETATION: Although we detected no significant difference between groups at 1 month after vaccine course, MenACWY-CRM and 4CMenB vaccines reduced meningococcal carriage rates during 12 months after vaccination and therefore might affect transmission when widely implemented. FUNDING: Novartis Vaccines.


Asunto(s)
Portador Sano/prevención & control , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/uso terapéutico , Neisseria meningitidis Serogrupo B , Neisseria meningitidis , Adolescente , Femenino , Humanos , Masculino , Método Simple Ciego , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...