Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(52): e202312615, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37945530

RESUMEN

Chiral plasmonic nanoparticles have attracted much attention because of their strong chiroptical responses and broad scientific applications. However, the types of chiral plasmonic nanoparticles have remained limited. Herein we report on a new type of chiral nanoparticle, chiral Au nanorod (NR) with five-fold rotational symmetry, which is synthesized using chiral molecules. Three different types of Au seeds (Au elongated nanodecahedrons, nanodecahedrons, and nanobipyramids) are used to study the growth behaviors. Different synthesis parameters, including the chiral molecules, surfactant, reductant, seeds, and Au precursor, are systematically varied to optimize the chiroptical responses of the chiral Au NRs. The chiral scattering measurements on the individual chiral Au NRs and their dimers are performed. Intriguingly, the chiroptical signals of the individual chiral Au NRs and their end-to-end dimers are similar, while those of the side-by-side dimers are largely reduced. Theoretical calculations and numerical simulations reveal that the different chiroptical responses of the chiral NR dimers are originated from the coupling effect between the plasmon resonance modes. Our study enriches chiral plasmonic nanoparticles and provides valuable insight for the design of plasmonic nanostructures with desired chiroptical properties.

2.
Ultramicroscopy ; 253: 113804, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37481909

RESUMEN

Magnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca. 60% when averaged over several performance metrics. Moreover, we further validate WRAP's performance on experimental electron holography data, revealing the detailed magnetism of vortex states in a CuCo nanowire. We believe WRAP represents a major step forward in the development of magnetic VET as a tool for probing magnetism at the nanoscale.

3.
Ultramicroscopy ; 252: 113775, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37295062

RESUMEN

Electron tomography (ET) has become an important tool for understanding the 3D nature of nanomaterials, with recent developments enabling not only scalar reconstructions of electron density, but also vector reconstructions of magnetic fields. However, whilst new signals have been incorporated into the ET toolkit, the acquisition schemes have largely kept to conventional single-axis tilt series for scalar ET, and dual-axis schemes for magnetic vector ET. In this work, we explore the potential of using multi-axis tilt schemes including conical and spiral tilt schemes to improve reconstruction fidelity in scalar and magnetic vector ET. Through a combination of systematic simulations and a proof-of-concept experiment, we show that spiral and conical tilt schemes have the potential to produce substantially improved reconstructions, laying the foundations of a new approach to electron tomography acquisition and reconstruction.


Asunto(s)
Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Campos Magnéticos
4.
Nat Commun ; 14(1): 3783, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355650

RESUMEN

Enriching the library of chiral plasmonic nanoparticles that can be chemically mass-produced will greatly facilitate the applications of chiral plasmonics in areas ranging from constructing optical metamaterials to sensing chiral molecules and activating immune cells. Here we report on a halide-assisted differential growth strategy that can direct the anisotropic growth of chiral Au nanoparticles with tunable sizes and diverse morphologies. Anisotropic Au nanodisks are employed as seeds to yield triskelion-shaped chiral nanoparticles with threefold rotational symmetry and high dissymmetry factors. The averaged scattering g-factors of the L- and D-nanotriskelions are as large as 0.57 and - 0.49 at 650 nm, respectively. The Au nanotriskelions have been applied in chiral optical switching devices and chiral nanoemitters. We also demonstrate that the manipulation of the directional growth rate enables the generation of a variety of chiral morphologies in the presence of homochiral ligands.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Estereoisomerismo , Anisotropía
5.
Nanoscale ; 14(45): 16918-16928, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36345669

RESUMEN

Plasmonic nanoparticles (NPs) have garnered excitement over the past several decades stemming from their unique optoelectronic properties, leading to their use in various sensing applications and theranostics. Symmetry dictates the properties of many nanomaterials, and nanostructures with low, but still defined symmetries, often display markedly different properties compared to their higher symmetry counterparts. While numerous methods are available to manipulate symmetry, surface protecting groups such as polymers are finding use due to their ability to achieve regioselective modification of NP seeds, which can be removed after overgrowth as shown here. Specifically, poly(styrene-b-polyacrylic acid) (PSPAA) is used to asymmetrically passivate cubic Au seeds through competition with hexadecyltrimethylammonium bromide (CTAB) ligands. The asymmetric passivation via collapsed PSPAA causes only select vertices and faces of the Au cubes to be available for deposition of new material (i.e., Au, Au-Ag alloy, and Au-Pd alloy) during seeded overgrowth. At low metal precursor concentrations, deposition follows observations from unpassivated seeds but with new material growing from only the exposed seed portions. At high metal precursor concentrations, nanobowl-like structures form from interaction between the depositing phase and the passivating PSPAA. Through experiment and simulation, the optoelectronic properties of these nanobowls were probed, finding that the interiors and exteriors of the nanobowls can be functionalized selectively as revealed by surface enhanced Raman spectroscopy (SERS).

6.
Chem Commun (Camb) ; 58(82): 11575-11578, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36168847

RESUMEN

Chiral plasmonic nanocrystals with varied symmetries were synthesized by L-glutathione-guided overgrowth from Au tetrahedra, nanoplates, and octahedra, highlighting the importance of chiral molecule adsorption at transient kink sites. Large g-factors are possible and depend on symmetry. Simulations of their chiroptical properties from tomographically obtained nanocrystal models further verify their chirality.

7.
Nano Lett ; 20(10): 7405-7412, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32915579

RESUMEN

Iron oxide nanorings have great promise for biomedical applications because of their magnetic vortex state, which endows them with a low remanent magnetization while retaining a large saturation magnetization. Here we use micromagnetic simulations to predict the exact shapes that can sustain magnetic vortices, using a toroidal model geometry with variable diameter, ring thickness, and ring eccentricity. Our model phase diagram is then compared with simulations of experimental geometries obtained by electron tomography. High axial eccentricity and low ring thickness are found to be key factors for forming vortex states and avoiding net-magnetized metastable states. We also find that while defects from a perfect toroidal geometry increase the stray field associated with the vortex state, they can also make the vortex state more energetically accessible. These results constitute an important step toward optimizing the magnetic behavior of toroidal iron oxide nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...