Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Anal Chem ; 96(17): 6566-6574, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642077

RESUMEN

Quantitative liquid chromatography-mass spectrometry (LC-MS)-based metabolomics is becoming an important approach for studying complex biological systems but presents several technical challenges that limit its widespread use. Computing metabolite concentrations using standard curves generated from standard mixtures of known concentrations is a labor-intensive process that is often performed manually. Currently, there are few options for open-source software tools that can automatically calculate metabolite concentrations. Herein, we introduce SCALiR (standard curve application for determining linear ranges), a new web-based software tool specifically built for this task, which allows users to automatically transform LC-MS signals into absolute quantitative data (https://www.lewisresearchgroup.org/software). SCALiR uses an algorithm that automatically finds the equation of the line of best fit for each standard curve and uses this equation to calculate compound concentrations from the LC-MS signal. Using a standard mix containing 77 metabolites, we show a close correlation between the concentrations calculated by SCALiR and the expected concentrations of each compound (R2 = 0.99 for a y = x curve fitting). Moreover, we demonstrate that SCALiR reproducibly calculates concentrations of midrange standards across ten analytical batches (average coefficient of variation 0.091). SCALiR can be used to calculate metabolite concentrations either using external calibration curves or by using internal standards to correct for matrix effects. This open-source and vendor agnostic software offers users several advantages in that (1) it requires only 10 s of analysis time to compute concentrations of >75 compounds, (2) it facilitates automation of quantitative workflows, and (3) it performs deterministic evaluations of compound quantification limits. SCALiR therefore provides the metabolomics community with a simple and rapid tool that enables rigorous and reproducible quantitative metabolomics studies.


Asunto(s)
Espectrometría de Masas , Metabolómica , Programas Informáticos , Metabolómica/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Internet , Algoritmos , Automatización , Animales
2.
Anal Chem ; 96(8): 3382-3388, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38359900

RESUMEN

Metabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms. Metabolic network modeling is commonly used to frame metabolomics data in the context of a broader biological system. However, network modeling of poorly characterized nonmodel organisms remains challenging due to gene homology mismatches which lead to network architecture errors. To address this, we developed the Metabolic Interactive Nodular Network for Omics (MINNO), a web-based mapping tool that uses empirical metabolomics data to refine metabolic networks. MINNO allows users to create, modify, and interact with metabolic pathway visualizations for thousands of organisms, in both individual and multispecies contexts. Herein, we illustrate the use of MINNO in elucidating the metabolic networks of understudied species, such as those of the Borrelia genus, which cause Lyme and relapsing fever diseases. Using a hybrid genomics-metabolomics modeling approach, we constructed species-specific metabolic networks for threeBorrelia species. Using these empirically refined networks, we were able to metabolically differentiate these species via their nucleotide metabolism, which cannot be predicted from genomic networks. Additionally, using MINNO, we identified 18 missing reactions from the KEGG database, of which nine were supported by the primary literature. These examples illustrate the use of metabolomics for the empirical refining of genetically constructed networks and show how MINNO can be used to study nonmodel organisms.


Asunto(s)
Metabolómica , Programas Informáticos , Genómica , Genoma , Redes y Vías Metabólicas
3.
Curr Opin Biotechnol ; 85: 103027, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061263

RESUMEN

Many biological phenotypes are rooted in metabolic pathway activity rather than the concentrations of individual metabolites. Despite this, most metabolomics studies only capture steady-state metabolism - not metabolic flux. Although sophisticated metabolic flux analysis strategies have been developed, these methods are technically challenging and difficult to implement in large-cohort studies. Recently, a new boundary flux analysis (BFA) approach has emerged that captures large-scale metabolic flux phenotypes by quantifying changes in metabolite levels in the media of cultured cells. This approach is advantageous because it is relatively easy to implement yet captures complex metabolic flux phenotypes. We describe the opportunities and challenges of BFA and illustrate how it can be harnessed to investigate a wide transect of biological phenomena.


Asunto(s)
Redes y Vías Metabólicas , Metabolómica , Humanos , Metabolómica/métodos , Análisis de Flujos Metabólicos/métodos , Modelos Biológicos
4.
Gut Microbes ; 15(2): 2281011, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38078655

RESUMEN

Gut bacteria provide benefits to the host and have been implicated in inflammatory bowel disease (IBD), where adherent-invasive E. coli (AIEC) pathobionts (e.g., strain LF82) are associated with Crohn's disease. E. coli-LF82 causes fragmentation of the epithelial mitochondrial network, leading to increased epithelial permeability. We hypothesized that butyrate would limit the epithelial mitochondrial disruption caused by E. coli-LF82. Human colonic organoids and the T84 epithelial cell line infected with E. coli-LF82 (MOI = 100, 4 h) showed a significant increase in mitochondrial network fission that was reduced by butyrate (10 mM) co-treatment. Butyrate reduced the loss of mitochondrial membrane potential caused by E. coli-LF82 and increased expression of PGC-1α mRNA, the master regulator of mitochondrial biogenesis. Metabolomics revealed that butyrate significantly altered E. coli-LF82 central carbon metabolism leading to diminished glucose uptake and increased succinate secretion. Correlating with preservation of mitochondrial network form/function, butyrate reduced E. coli-LF82 transcytosis across T84-cell monolayers. The use of the G-protein inhibitor, pertussis toxin, implicated GPCR signaling as critical to the effect of butyrate, and the free fatty acid receptor three (FFAR3, GPR41) agonist, AR420626, reproduced butyrate's effect in terms of ameliorating the loss of barrier function and reducing the mitochondrial fragmentation observed in E. coli-LF82 infected T84-cells and organoids. These data indicate that butyrate helps maintain epithelial mitochondrial form/function when challenged by E. coli-LF82 and that this occurs, at least in part, via FFAR3. Thus, loss of butyrate-producing bacteria in IBD in the context of pathobionts would contribute to loss of epithelial mitochondrial and barrier functions that could evoke disease and/or exaggerate a low-grade inflammation.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Mucosa Intestinal/microbiología , Ácidos Grasos no Esterificados/metabolismo , Butiratos/farmacología , Butiratos/metabolismo , Enfermedad de Crohn/microbiología , Adhesión Bacteriana/genética
5.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645808

RESUMEN

Metabolomics is an important approach for studying complex biological systems. Quantitative liquid chromatography-mass spectrometry (LC-MS)-based metabolomics is becoming a mainstream strategy but presents several technical challenges that limit its widespread use. Computing metabolite concentrations using standard curves generated from standard mixtures of known concentrations is a labor-intensive process which is often performed manually. Currently, there are few options for open-source software tools that can automatically calculate metabolite concentrations. Herein, we introduce SCALiR (Standard Curve Application for determining Linear Ranges), a new web-based software tool specifically built for this task, which allows users to automatically transform LC-MS signal data into absolute quantitative data (https://www.lewisresearchgroup.org/software). The algorithm used in SCALiR automatically finds the equation of the line of best fit for each standard curve and uses this equation to calculate compound concentrations from their LC-MS signal. Using a standard mix containing 77 metabolites, we found excellent correlation between the concentrations calculated by SCALiR and the expected concentrations of each compound (R2 = 0.99) and that SCALiR reproducibly calculated concentrations of mid-range standards across ten analytical batches (average coefficient of variation 0.091). SCALiR offers users several advantages, including that it (1) is open-source and vendor agnostic; (2) requires only 10 seconds of analysis time to compute concentrations of >75 compounds; (3) facilitates automation of quantitative workflows; and (4) performs deterministic evaluation of compound quantification limits. SCALiR provides the metabolomics community with a simple and rapid tool that enables rigorous and reproducible quantitative metabolomics studies.

6.
Nat Commun ; 14(1): 1348, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906623

RESUMEN

Commensal bacteria are major contributors to mammalian metabolism. We used liquid chromatography mass spectrometry to study the metabolomes of germ-free, gnotobiotic, and specific-pathogen-free mice, while also evaluating the influence of age and sex on metabolite profiles. Microbiota modified the metabolome of all body sites and accounted for the highest proportion of variation within the gastrointestinal tract. Microbiota and age explained similar amounts of variation the metabolome of urine, serum, and peritoneal fluid, while age was the primary driver of variation in the liver and spleen. Although sex explained the least amount of variation at all sites, it had a significant impact on all sites except the ileum. Collectively, these data illustrate the interplay between microbiota, age, and sex in the metabolic phenotypes of diverse body sites. This provides a framework for interpreting complex metabolic phenotypes and will help guide future studies into the role that the microbiome plays in disease.


Asunto(s)
Metaboloma , Microbiota , Ratones , Animales , Tracto Gastrointestinal/microbiología , Vida Libre de Gérmenes , Organismos Libres de Patógenos Específicos , Metabolómica/métodos , Mamíferos
7.
Cell Rep ; 42(2): 112064, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36724077

RESUMEN

Neutrophils are critical in the host defense against Staphylococcus aureus, a major human pathogen. However, even in the setting of a robust neutrophil response, S. aureus can evade immune clearance. Here, we demonstrate that S. aureus impairs neutrophil function by triggering the production of the anti-inflammatory metabolite itaconate. The enzyme that synthesizes itaconate, Irg1, is selectively expressed in neutrophils during S. aureus pneumonia. Itaconate inhibits neutrophil glycolysis and oxidative burst, which impairs survival and bacterial killing. In a murine pneumonia model, neutrophil Irg1 expression protects the lung from excessive inflammation but compromises bacterial clearance. S. aureus is thus able to evade the innate immune response by targeting neutrophil metabolism and inducing the production of the anti-inflammatory metabolite itaconate.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Animales , Ratones , Neutrófilos/metabolismo , Estallido Respiratorio , Infecciones Estafilocócicas/microbiología
8.
Anal Bioanal Chem ; 415(2): 269-276, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36443449

RESUMEN

Liquid chromatography mass spectrometry (LC-MS) has emerged as a mainstream strategy for metabolomics analyses. One advantage of LC-MS is that it can serve both as a biomarker discovery tool and as a platform for clinical diagnostics. Consequently, it offers an exciting opportunity to potentially transition research studies into real-world clinical tools. One important distinction between research versus diagnostics-based applications of LC-MS is throughput. Clinical LC-MS must enable quantitative analyses of target molecules in hundreds or thousands of samples each day. Currently, the throughput of these clinical applications is limited by the chromatographic gradient lengths, which-when analyzing complex metabolomics samples-are difficult to conduct in under ~ 3 min per sample without introducing serious quantitative analysis problems. To address this shortcoming, we developed sequential quantification using isotope dilution (SQUID), an analytical strategy that combines serial sample injections into a continuous isocratic mobile phase to maximize throughput. SQUID uses internal isotope-labelled standards to correct for changes in LC-MS response factors over time. We show that SQUID can detect microbial polyamines in human urine specimens (lower limit of quantification; LLOQ = 106 nM) with less than 0.019 normalized root mean square error. Moreover, we show that samples can be analyzed in as little as 57 s. We propose SQUID as a new, high-throughput LC-MS tool for quantifying small sets of target biomarkers across large cohorts.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Metabolómica/métodos , Biomarcadores/análisis , Poliaminas
9.
Front Microbiol ; 13: 958785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177472

RESUMEN

Metabolomics is a mainstream strategy for investigating microbial metabolism. One emerging application of metabolomics is the systematic quantification of metabolic boundary fluxes - the rates at which metabolites flow into and out of cultured cells. Metabolic boundary fluxes can capture complex metabolic phenotypes in a rapid assay, allow computational models to be built that predict the behavior of cultured organisms, and are an emerging strategy for clinical diagnostics. One advantage of quantifying metabolic boundary fluxes rather than intracellular metabolite levels is that it requires minimal sample processing. Whereas traditional intracellular analyses require a multi-step process involving extraction, centrifugation, and solvent exchange, boundary fluxes can be measured by simply analyzing the soluble components of the culture medium. To further simplify boundary flux analyses, we developed a custom 96-well sampling system-the Microbial Containment Device (MCD)-that allows water-soluble metabolites to diffuse from a microbial culture well into a bacteria-free analytical well via a semi-permeable membrane. The MCD was designed to be compatible with the autosamplers present in commercial liquid chromatography-mass spectrometry systems, allowing metabolic fluxes to be analyzed with minimal sample handling. Herein, we describe the design, evaluation, and performance testing of the MCD relative to traditional culture methods. We illustrate the utility of this platform, by quantifying the unique boundary fluxes of four bacterial species and demonstrate antibiotic-induced perturbations in their metabolic activity. We propose the use of the MCD for enabling single-step metabolomics sample preparation for microbial identification, antimicrobial susceptibility testing, and other metabolic boundary flux applications where traditional sample preparation methods are impractical.

10.
Trends Microbiol ; 30(12): 1174-1204, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35941063

RESUMEN

Uropathogenic Escherichia coli (UPEC) is responsible for more than 75% of urinary tract infections (UTIs) and has been studied extensively to better understand the molecular underpinnings of infection and pathogenesis. Although the macromolecular adaptations UPEC employs - including the expression of virulence factors, adhesion molecules, and iron-acquisition systems - are well described, the role that metabolism plays in enabling infection is still unclear. However, a growing body of literature shows that metabolic function can have a profound impact on which strains can colonize the urinary tract. The goal of this review is to critically appraise this emerging body of literature to better understand the role that nutritional selection plays in enabling urinary tract colonization and the progression of UTIs.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Escherichia coli Uropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Virulencia , Factores de Virulencia/metabolismo
11.
Mucosal Immunol ; 15(6): 1071-1084, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35970917

RESUMEN

Advances in technology and software have radically expanded the scope of metabolomics studies and allow us to monitor a broad transect of central carbon metabolism in routine studies. These increasingly sophisticated tools have shown that many human diseases are modulated by microbial metabolism. Despite this, it remains surprisingly difficult to move beyond these statistical associations and identify the specific molecular mechanisms that link dysbiosis to the progression of human disease. This difficulty stems from both the biological intricacies of host-microbiome dynamics as well as the analytical complexities inherent to microbiome metabolism research. The primary objective of this review is to examine the experimental and computational tools that can provide insights into the molecular mechanisms at work in host-microbiome interactions and to highlight the undeveloped frontiers that are currently holding back microbiome research from fully leveraging the benefits of modern metabolomics.


Asunto(s)
Microbiota , Humanos , Metabolómica , Disbiosis , Fenotipo
12.
Front Microbiol ; 13: 957158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935218

RESUMEN

Microbes have diverse metabolic capabilities and differences in these phenotypes are critical for differentiating strains, species, and broader taxa of microorganisms. Recent advances in liquid chromatography-mass spectrometry (LC-MS) allow researchers to track the complex combinations of molecules that are taken up by each cell type and to quantify the rates that individual metabolites enter or exit the cells. This metabolomics-based approach allows complex metabolic phenotypes to be captured in a single assay, enables computational models of microbial metabolism to be constructed, and can serve as a diagnostic approach for clinical microbiology. Unfortunately, metabolic phenotypes are directly affected by the molecular composition of the culture medium and many traditional media are subject to molecular-level heterogeneity. Herein, we show that commercially sourced Mueller Hinton (MH) medium, a Clinical and Laboratory Standards Institute (CLSI) approved medium for clinical microbiology, has significant lot-to-lot and supplier-to-supplier variability in the concentrations of individual nutrients. We show that this variability does not affect microbial growth rates but does affect the metabolic phenotypes observed in vitro-including metabolic phenotypes that distinguish six common pathogens. To address this, we used a combination of isotope-labeling, substrate exclusion, and nutritional supplementation experiments using Roswell Park Memorial Institute (RPMI) medium to identify the specific nutrients used by the microbes to produce diagnostic biomarkers, and to formulate a Biomarker Enrichment Medium (BEM) as an alternative to complex undefined media for metabolomics research, clinical diagnostics, antibiotic susceptibility testing, and other applications where the analysis of stable microbial metabolic phenotypes is important.

13.
Front Neurosci ; 16: 917197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812241

RESUMEN

Inflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is limited such that 5-25% of IBD outpatients are treated with narcotics, with associated morbidity and mortality. IBD patients commonly present with substantial alterations to the microbial community structure within the gastrointestinal tract, known as dysbiosis. The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized by altered bowel habits and abdominal pain, in the absence of inflammation. An emerging body of literature suggests that the gut microbiome plays an important role in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship with host receptors that are highly expressed on host cell and neurons, suggesting that microbial metabolites play a key role in visceral hypersensitivity. In this review, we will discuss the techniques used to analysis the metabolome, current potential metabolite targets for visceral hypersensitivity, and discuss the current literature that evaluates the role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.

14.
Anal Chem ; 94(25): 8874-8882, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35700271

RESUMEN

Metabolomics is a mainstream approach for investigating the metabolic underpinnings of complex biological phenomena and is increasingly being applied to large-scale studies involving hundreds or thousands of samples. Although metabolomics methods are robust in smaller-scale studies, they can be challenging to apply to larger cohorts due to the inherent variability of liquid chromatography mass spectrometry (LC-MS). Much of this difficulty results from the time-dependent changes in the LC-MS system, which affects both the qualitative and quantitative performances of the instrument. Herein, we introduce an analytical strategy for addressing this problem in large-scale microbial studies. Our approach quantifies microbial boundary fluxes using two zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) columns that are plumbed to enable offline column equilibration. Using this strategy, we show that over 397 common metabolites can be resolved in 4.5 min per sample and that metabolites can be quantified with a median coefficient of variation of 0.127 across 1100 technical replicates. We illustrate the utility of this strategy via an analysis of 960 strains of Staphylococcus aureus isolated from bloodstream infections. These data capture the diversity of metabolic phenotypes observed in clinical isolates and provide an example of how large-scale investigations can leverage our novel analytical strategy.


Asunto(s)
Técnicas de Cultivo de Célula , Metabolómica , Cromatografía Liquida/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas/métodos , Metabolómica/métodos
15.
Cell Metab ; 34(5): 761-774.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35413274

RESUMEN

K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/microbiología , Estrés Fisiológico
16.
PLoS One ; 17(4): e0267093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35443015

RESUMEN

Short chain fatty acids (SCFAs; including acetate, propionate, and butyrate) are an important class of biological molecules that play a major role in modulating host-microbiome interactions. Despite significant research into SCFA-mediated biological mechanisms, absolute quantification of these molecules in their native form by liquid chromatography mass spectrometry is challenging due to their relatively poor chromatographic properties. Herein, we introduce SQUAD, an isotope-based strategy for absolute quantification of SCFAs in complex biological samples. SQUAD uses aniline derivatization in conjunction with isotope dilution and analysis by reverse-phase liquid chromatography mass spectrometry. We show that SQUAD enables absolute quantification of biologically relevant SCFAs in complex biological samples with a lower limit of detection of 40 nM and a lower limit of quantification ranging from 160 nM to 310 nM. We observed an intra- and inter-day precision under 3% (relative standard deviation) and errors in intra- and inter-day accuracy under 10%. To demonstrate this quantification strategy, we analyzed SCFAs in the caecal contents of germ free versus conventionally raised specific pathogen free (SPF) mice. We showed that acetate was the most abundant SCFA in both types of mice and was present at 200-fold higher concentration in the SPF mice. We also illustrated the use of our quantification strategy in in vitro microbial cultures from five different species of bacteria grown in Mueller Hinton media. This study illustrates the diverse SCFA production rates across microbial taxa with acetate production serving as one of the key differentiating factors across the species. In summary, we introduce an isotope dilution strategy for absolute quantification of aniline-dativized SCFAs and illustrate the utility of this approach for microbiome research.


Asunto(s)
Cromatografía de Fase Inversa , Ácidos Grasos Volátiles , Acetatos , Cromatografía Liquida/métodos , Ácidos Grasos Volátiles/análisis , Espectrometría de Masas en Tándem/métodos
17.
Nat Commun ; 13(1): 2332, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484129

RESUMEN

Bloodstream infections (BSIs) cause >500,000 infections and >80,000 deaths per year in North America. The length of time between the onset of symptoms and administration of appropriate antimicrobials is directly linked to mortality rates. It currently takes 2-5 days to identify BSI pathogens and measure their susceptibility to antimicrobials - a timeline that directly contributes to preventable deaths. To address this, we demonstrate a rapid metabolic preference assay (MPA) that uses the pattern of metabolic fluxes observed in ex-vivo microbial cultures to identify common pathogens and determine their antimicrobial susceptibility profiles. In a head-to-head race with a leading platform (VITEK 2, BioMérieux) used in diagnostic laboratories, MPA decreases testing timelines from 40 hours to under 20. If put into practice, this assay could reduce septic shock mortality and reduce the use of broad spectrum antibiotics.


Asunto(s)
Antiinfecciosos , Sepsis , Choque Séptico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bioensayo , Humanos , Sepsis/diagnóstico
18.
Brain Behav Immun ; 102: 266-278, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35259427

RESUMEN

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Microbiota , Animales , Colitis/inducido químicamente , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL
19.
Sci Adv ; 8(5): eabm0142, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35108057

RESUMEN

The mechanisms that drive leukocyte recruitment to the kidney are incompletely understood. Dipeptidase-1 (DPEP1) is a major neutrophil adhesion receptor highly expressed on proximal tubular cells and peritubular capillaries of the kidney. Renal ischemia reperfusion injury (IRI) induces robust neutrophil and monocyte recruitment and causes acute kidney injury (AKI). Renal inflammation and the AKI phenotype were attenuated in Dpep1-/- mice or mice pretreated with DPEP1 antagonists, including the LSALT peptide, a nonenzymatic DPEP1 inhibitor. DPEP1 deficiency or inhibition primarily blocked neutrophil adhesion to peritubular capillaries and reduced inflammatory monocyte recruitment to the kidney after IRI. CD44 but not ICAM-1 blockade also decreased neutrophil recruitment to the kidney during IRI and was additive to DPEP1 effects. DPEP1, CD44, and ICAM-1 all contributed to the recruitment of monocyte/macrophages to the kidney following IRI. These results identify DPEP1 as a major leukocyte adhesion receptor in the kidney and potential therapeutic target for AKI.


Asunto(s)
Lesión Renal Aguda , Dipeptidasas/metabolismo , Daño por Reperfusión , Lesión Renal Aguda/etiología , Animales , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Inflamación/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Front Microbiol ; 12: 711000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603239

RESUMEN

Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite ( SeO 3 2 - ) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect of SeO 3 2 - exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not with SeO 3 2 - . The results show substantial biochemical changes in SeITE01 cells when exposed to SeO 3 2 - . The initial uptake of SeO 3 2 - by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms against SeO 3 2 - are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification of SeO 3 2 - to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells from SeO 3 2 - toxicity while it is converting into SeNPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...