Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 134: 102609, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705612

RESUMEN

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Asunto(s)
Hidróxido de Aluminio , Dinoflagelados , Floraciones de Algas Nocivas , Toxinas Marinas , Animales , Dinoflagelados/efectos de los fármacos , Dinoflagelados/fisiología , Dinoflagelados/química , Arcilla/química , Bivalvos/fisiología , Bivalvos/efectos de los fármacos , Erizos de Mar/fisiología , Erizos de Mar/efectos de los fármacos , Florida , Braquiuros/fisiología , Braquiuros/efectos de los fármacos , Mercenaria/efectos de los fármacos , Mercenaria/fisiología , Silicatos de Aluminio/farmacología , Silicatos de Aluminio/química
2.
Harmful Algae ; 128: 102492, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37714578

RESUMEN

Harmful algal blooms (HABs) of the toxic marine dinoflagellate Karenia brevis, commonly called red tides, are an ongoing threat to human health and marine ecosystems in Florida. Clay flocculation is a standard control strategy for marine HABs in China and Korea and is currently being assessed for use in the United States. We evaluated the effects of a PAC-modified clay called Modified Clay II on mortality, eyestalk reflexes, and righting reflexes of 48 adult blue crabs (Callinectes sapidus). Crabs were exposed to clay alone (0.5 g L - 1), untreated K. brevis (1 × 106 cells L - 1), or a combination of K. brevis and clay for eight days. Clay treatment reduced cell concentrations in the water column by 95% after 24 h. We detected no significant differences in mortality, righting reflexes, or eyestalk reflexes between treatments. Our results indicate that the clay alone is not harmful to adult crabs at typical treatment concentrations within the measured time frame, and that treatment of K. brevis with this clay appears to have a negligible impact on crab mortality and the reflex variables we measured. These results suggest that Modified Clay II may be a viable option to treat K. brevis blooms without impacting adult blue crab populations. Additional controlled experiments and field tests are needed to further evaluate the impact of clay on natural benthic communities.


Asunto(s)
Braquiuros , Dinoflagelados , Humanos , Animales , Arcilla , Ecosistema , Floraciones de Algas Nocivas
3.
Environ Model Softw ; 145: 105209, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34733111

RESUMEN

Marine Ecosystem Models (MEMs) provide a deeper understanding of marine ecosystem dynamics. The United Nations Decade of Ocean Science for Sustainable Development has highlighted the need to deploy these complex mechanistic spatial-temporal models to engage policy makers and society into dialogues towards sustainably managed oceans. From our shared perspective, MEMs remain underutilized because they still lack formal validation, calibration, and uncertainty quantifications that undermines their credibility and uptake in policy arenas. We explore why these shortcomings exist and how to enable the global modelling community to increase MEMs' usefulness. We identify a clear gap between proposed solutions to assess model skills, uncertainty, and confidence and their actual systematic deployment. We attribute this gap to an underlying factor that the ecosystem modelling literature largely ignores: technical issues. We conclude by proposing a conceptual solution that is cost-effective, scalable and simple, because complex spatial-temporal marine ecosystem modelling is already complicated enough.

4.
J Neurodev Disord ; 13(1): 30, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429070

RESUMEN

BACKGROUND: Prenatal exposure to air pollutants is associated with increased risk for neurodevelopmental and neurodegenerative disorders. However, few studies have identified transcriptional changes related to air pollutant exposure. METHODS: RNA sequencing was used to examine transcriptomic changes in blood and cerebral cortex of three male and three female mouse neonates prenatally exposed to traffic-related nano-sized particulate matter (nPM) compared to three male and three female mouse neonates prenatally exposed to control filter air. RESULTS: We identified 19 nPM-associated differentially expressed genes (nPM-DEGs) in blood and 124 nPM-DEGs in cerebral cortex. The cerebral cortex transcriptional responses to nPM suggested neuroinflammation involvement, including CREB1, BDNF, and IFNγ genes. Both blood and brain tissues showed nPM transcriptional changes related to DNA damage, oxidative stress, and immune responses. Three blood nPM-DEGs showed a canonical correlation of 0.98 with 14 nPM-DEGS in the cerebral cortex, suggesting a convergence of gene expression changes in blood and cerebral cortex. Exploratory sex-stratified analyses suggested a higher number of nPM-DEGs in female cerebral cortex than male cerebral cortex. The sex-stratified analyses identified 2 nPM-DEGs (Rgl2 and Gm37534) shared between blood and cerebral cortex in a sex-dependent manner. CONCLUSIONS: Our findings suggest that prenatal nPM exposure induces transcriptional changes in the cerebral cortex, some of which are also observed in blood. Further research is needed to replicate nPM-induced transcriptional changes with additional biologically relevant time points for brain development.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Animales , Corteza Cerebral , Femenino , Masculino , Ratones , Material Particulado/toxicidad , Embarazo , Transcriptoma
5.
Artículo en Inglés | MEDLINE | ID: mdl-33050454

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by disruptions in social communication and behavioral flexibility. Both genetic and environmental factors contribute to ASD risk. Epidemiologic studies indicate that roadway vehicle exhaust and in utero exposure to diesel particulate matter (DPM) are associated with ASD. Using the Comparative Toxicogenomics Database (CTD), we identified genes connected to DPM exposure and ASD, extracted the known enhancers/promoters of the identified genes, and integrated this with Assay for Transposase Accessible Chromatin (ATAC-seq) data from DPM-exposed human neural progenitor cells. Enhancer/promoter elements with significantly different chromosome accessibility revealed enriched DNA sequence motifs with transcription factor binding sites for EGR1. Variant extraction for linkage disequilibrium blocks of these regions followed by analysis through Genome Wide Association Studies (GWAS) revealed multiple neurological trait associations including exploratory eye movement and brain volume measurement. This approach highlights the effects of pollution on the regulatory regions of genes implicated in ASD by genetic studies, indicating convergence of genetic and environmental factors on molecular networks that contribute to ASD. Integration of publicly available data from the CTD, cell culture exposure studies, and phenotypic genetics synergize extensive evidence of chemical exposures on gene regulation for altered brain development.


Asunto(s)
Trastorno del Espectro Autista , Contaminantes Ambientales , Epigénesis Genética , Material Particulado , Toxicogenética , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/genética , Contaminantes Ambientales/toxicidad , Epigénesis Genética/efectos de los fármacos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Exposición Materna , Material Particulado/toxicidad
7.
Transl Psychiatry ; 10(1): 218, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636363

RESUMEN

Gestational exposure to air pollution increases the risk of autism spectrum disorder and cognitive impairments with unresolved molecular mechanisms. This study exposed C57BL/6J mice throughout gestation to urban-derived nanosized particulate matter (nPM). Young adult male and female offspring were studied for behavioral and metabolic changes using forced swim test, fat gain, glucose tolerance, and hippocampal transcriptome. Gestational nPM exposure caused increased depressive behaviors, decreased neurogenesis in the dentate gyrus, and increased glucose tolerance in adult male offspring. Both sexes gained fat and body weight. Gestational nPM exposure induced 29 differentially expressed genes (DEGs) in adult hippocampus related to cytokine production, IL17a signaling, and dopamine degradation in both sexes. Stratification by sex showed twofold more DEGs in males than females (69 vs 37), as well as male-specific enrichment of DEGs mediating serotonin signaling, endocytosis, Gαi, and cAMP signaling. Gene co-expression analysis (WCGNA) identified a module of 43 genes with divergent responses to nPM between the sexes. Chronic changes in 14 DEGs (e.g., microRNA9-1) were associated with depressive behaviors, adiposity and glucose intolerance. These genes enriched neuroimmune pathways such as HMGB1 and TLR4. Based on cerebral cortex transcriptome data of neonates, we traced the initial nPM responses of HMGB1 pathway. In vitro, mixed glia responded to 24 h nPM with lower HMGB1 protein and increased proinflammatory cytokines. This response was ameliorated by TLR4 knockdown. In sum, we identified transcriptional changes that could be associated with air pollution-mediated behavioral and phenotypic changes. These identified genes merit further mechanistic studies for therapeutic intervention development.


Asunto(s)
Contaminación del Aire , Trastorno del Espectro Autista , Contaminación del Aire/efectos adversos , Animales , Femenino , Hipocampo , Masculino , Ratones , Ratones Endogámicos C57BL , Transcriptoma
9.
Mar Pollut Bull ; 155: 111098, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32469757

RESUMEN

The 2010 Deepwater Horizon (DwH) oil spill in the Gulf of Mexico discharged ~3.19 million barrels of oil into Gulf waters, making it one of the largest marine disasters in history in terms of volume. We report on the results of a study to assess oil impacts to coastal fishes and invertebrates. Using two-decades of fisheries-independent data in coastal Alabama and Mississippi, we document variability following both natural and anthropogenic disturbances from two periods pre-DwH (1997-2001 and 2007-2009), one intra-spill period for acute DwH effects (2010-2012) and one period post-spill for chronic, longer-term impacts (2014-2017). Results indicated significant changes to community structure, relative abundance, and diversity in the intra-spill period. Causation for changes is confounded by variables such as behavioral emigration, altered freshwater inflow, death of consumers, and the mandated fishery closure. Results highlight the need for long-term, comprehensive monitoring/observing systems to provide adequate background for assessing future disturbances.


Asunto(s)
Desastres , Contaminación por Petróleo , Contaminantes Químicos del Agua/análisis , Alabama , Animales , Monitoreo del Ambiente , Golfo de México , Mississippi
10.
Dev Neurosci ; 42(5-6): 195-207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33657557

RESUMEN

Autism spectrum disorder (ASD) manifests early in childhood. While genetic variants increase risk for ASD, a growing body of literature has established that in utero chemical exposures also contribute to ASD risk. These chemicals include air-based pollutants like diesel particulate matter (DPM). A combination of single-cell and direct transcriptomics of DPM-exposed human-induced pluripotent stem cell-derived cerebral organoids revealed toxicogenomic effects of DPM exposure during fetal brain development. Direct transcriptomics, sequencing RNA bases via Nanopore, revealed that cerebral organoids contain extensive RNA modifications, with DPM-altering cytosine methylation in oxidative mitochondrial transcripts expressed in outer radial glia cells. Single-cell transcriptomics further confirmed an oxidative phosphorylation change in cell groups such as outer radial glia upon DPM exposure. This approach highlights how DPM exposure perturbs normal mitochondrial function and cellular respiration during early brain development, which may contribute to developmental disorders like ASD by altering neurodevelopment.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Material Particulado/toxicidad , Células Madre Pluripotentes/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Trastorno del Espectro Autista/etiología , Encéfalo/efectos de los fármacos , Femenino , Humanos , Exposición Materna/efectos adversos , Organoides , Análisis de Secuencia de ARN
11.
Front Genet ; 10: 970, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681417

RESUMEN

Most of the genetic risk for autism spectrum disorder (ASD) is inherited as common genetic variants, although some rare mutations have been identified in individuals with ASD. Common genetic variants are most parsimoniously identified by genome wide association studies. Genome wide association studies have identified several genetic loci with genome wide association with ASD. However, genome wide association studies only identify regions of the genome associated with phenotypic traits. Identification of the functional elements requires additional experimental evidence. Here, we demonstrate that a genome wide association study locus for ASD on chromosome 20p12.1, rs4141463, implicates a noncoding RNA as a functional element. Although rs4141463 lies within an intron of the protein-coding MACROD2 (MACRO domain containing 2) gene, expression of MACROD2 is neither altered in postmortem temporal cortex of individuals with ASD nor correlated with rs4141463 genotype. Our bioinformatics approaches revealed a noncoding RNA transcript near the autism susceptibility signal, RPS10P2-AS1 (ribosomal protein S10 pseudogene 2 anti-sense 1). In a panel of 15 human tissues, RPS10P2-AS1 was expressed at higher levels than the protein-coding MACROD2 in both fetal temporal cortex and adult peripheral blood. In postmortem temporal cortex, expression of RPS10P2-AS1 was increased 7-fold in individuals with ASD (P = 0.02) and increased 8-fold in individuals with the ASD-associated rs4141463 genotype (P = 0.01). Further, RPS10P2-AS1 expression was increased in human neural progenitor cells exposed to model air pollutants, indicating that both genetic and environmental factors that contribute to ASD increased RPS10P2-AS1 expression. Overexpression of RPS10P2-AS1 in human neural progenitor cells indicated substantial changes in neuronal gene expression. These data indicate that genome-wide significant associations with ASD implicate long noncoding RNAs. Because long noncoding RNAs are more abundant in human brain than protein-coding RNAs, this class of molecules is likely to contribute to ASD risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA