Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768633

RESUMEN

Observations of transiting gas giant exoplanets have revealed a pervasive depletion of methane1,2,3,4, which has only recently been identified atmospherically5,6. The depletion is thought to be maintained by disequilibrium processes such as photochemistry or mixing from a hotter interior7,8,9. However, the interiors are largely unconstrained along with the vertical mixing strength and only upper limits on the CH4 depletion have been available. The warm Neptune WASP-107 b stands out among exoplanets with an unusually low density, reported low core mass10, and temperatures amenable to CH4 though previous observations have yet to find the molecule2,4. Here we present a JWST NIRSpec transmission spectrum of WASP-107 b which shows features from both SO2 and CH4 along with H2O, CO2, and CO. We detect methane with 4.2σ significance at an abundance of 1.0±0.5 ppm, which is depleted by 3 orders of magnitude relative to equilibrium expectations. Our results are highly constraining for the atmosphere and interior, which indicate the envelope has a super-solar metallicity of 43±8× solar, a hot interior with an intrinsic temperature of Tint=460±40 K, and vigorous vertical mixing which depletes CH4 with a diffusion coefficient of Kzz = 1011.6±0.1 cm2/s. Photochemistry has a negligible effect on the CH4 abundance, but is needed to account for the SO2. We infer a core mass of 11.5 - 3.6 + 3.0 M⊕, which is much higher than previous upper limits10, releasing a tension with core-accretion models11.

2.
Nature ; 614(7949): 653-658, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623551

RESUMEN

Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0-4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6).

3.
Nature ; 548(7665): 58-61, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28770846

RESUMEN

Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere-where temperature increases with altitude-these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

4.
Science ; 356(6338): 628-631, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28495748

RESUMEN

A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.

5.
Nature ; 537(7618): 69-72, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27437572

RESUMEN

Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range, from depleted to extended hydrogen-dominated atmospheres. Here we report observations of the combined transmission spectrum of the two inner planets during their simultaneous transits on 4 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at ≥10σ levels; TRAPPIST-1 b and c are therefore unlikely to have an extended gas envelope as they occupy a region of parameter space in which high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum-from a cloud-free water-vapour atmosphere to a Venus-like one.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...