Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 11: 1231360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608978

RESUMEN

Introduction: The current deployment of the fifth generation (5G) of wireless communications raises new questions about the potential health effects of exposure to radiofrequency (RF) fields. So far, most of the established biological effects of RF have been known to be caused by heating. We previously reported inhibition of the spontaneous electrical activity of neuronal networks in vitro when exposed to 1.8 GHz signals at specific absorption rates (SAR) well above the guidelines. The present study aimed to assess the effects of RF fields at 3.5 GHz, one of the frequencies related to 5G, on neuronal activity in-vitro. Potential differences in the effects elicited by continuous-wave (CW) and 5G-modulated signals were also investigated. Methods: Spontaneous activity of neuronal cultures from embryonic cortices was recorded using 60-electrode multi-electrode arrays (MEAs) between 17 and 27 days in vitro. The neuronal cultures were subjected to 15 min RF exposures at SAR of 1, 3, and 28 W/kg. Results: At SAR close to the guidelines (1 and 3 W/kg), we found no conclusive evidence that 3.5 GHz RF exposure impacts the activity of neurons in vitro. On the contrary, CW and 5G-modulated signals elicited a clear decrease in bursting and total firing rates during RF exposure at high SAR levels (28 W/kg). Our experimental findings extend our previous results, showing that RF, at 1.8 to 3.5 GHz, inhibits the electrical activity of neurons in vitro at levels above environmental standards.


Asunto(s)
Calefacción , Neuronas
2.
PLoS One ; 17(8): e0268605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36044461

RESUMEN

Previous studies have shown that spontaneously active cultured networks of cortical neuron grown planar microelectrode arrays are sensitive to radiofrequency (RF) fields and exhibit an inhibitory response more pronounced as the exposure time and power increase. To better understand the mechanism behind the observed effects, we aimed at identifying similarities and differences between the inhibitory effect of RF fields (continuous wave, 1800 MHz) to the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol (MU). Inhibition of the network bursting activity in response to RF exposure became apparent at an SAR level of 28.6 W/kg and co-occurred with an elevation of the culture medium temperature of ~1°C. Exposure to RF fields preferentially inhibits bursting over spiking activity and exerts fewer constraints on neural network bursting synchrony, differentiating it from a pharmacological inhibition with MU. Network rebound excitation, a phenomenon relying on the intrinsic properties of cortical neurons, was observed following the removal of tonic hyperpolarization after washout of MU but not in response to cessation of RF exposure. This implies that hyperpolarization is not the main driving force mediating the inhibitory effects of RF fields. At the level of single neurons, network inhibition induced by MU and RF fields occurred with reduced action potential (AP) half-width. As changes in AP waveform strongly influence efficacy of synaptic transmission, the narrowing effect on AP seen under RF exposure might contribute to reducing network bursting activity. By pointing only to a partial overlap between the inhibitory hallmarks of these two forms of inhibition, our data suggest that the inhibitory mechanisms of the action of RF fields differ from the ones mediated by the activation of GABAA receptors.


Asunto(s)
Neuronas , Transmisión Sináptica , Potenciales de Acción/fisiología , Muscimol/farmacología , Neuronas/fisiología , Ondas de Radio , Transmisión Sináptica/fisiología
3.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054844

RESUMEN

It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW). The specific absorption rates (S.A.R.) used were 1.5 and 6 W/kg during DHM experiments and ranged from 5 to 24 W/kg during the recording of cellular impedance. Cells were continuously exposed for three to five consecutive days while the temporal phenotypic signature of cells behavior was recorded at constant temperature. Statistical analysis of the results does not indicate that RF-EMF exposure impacted the global behavior of healthy, apoptotic, or autophagic cells, even at S.A.R. levels higher than the guidelines, provided that the temperature was kept constant.


Asunto(s)
Apoptosis , Autofagia , Ondas de Radio , Coloración y Etiquetado , Trióxido de Arsénico/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/patología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Medio de Cultivo Libre de Suero , Impedancia Eléctrica , Holografía , Humanos , Neuronas/efectos de los fármacos , Neuronas/patología , Factores de Tiempo
4.
J Neurosci Methods ; 333: 108577, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31899208

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered as a gold standard therapy for the alleviation of motor symptoms in Parkinson's disease (PD). This success paved the way to its application for other neurological and psychiatric disorders. In this context, we aimed to develop a rodent-specific stimulator with characteristics similar to those used in patients. NEW METHOD: We designed a stimulator that can be connected to an electrode container with options for bilateral or unilateral stimulation selection and offers a wide range of frequencies, pulse widths and intensities, constant current, biphasic current-control and charge balancing. Dedicated software was developed to program these parameters and the device was tested on a bilateral 6-hydroxydopamine (6-OHDA) rat model of PD. RESULTS: The equipment was well tolerated by the animals with a good general welfare. STN stimulation (130 Hz frequency, 0.06 ms pulse width, 150 µA average intensity) improved the motor deficits induced by 6-OHDA as it significantly increased the number of movements compared to the values obtained in the same animals without STN stimulation. Furthermore, it restored motor coordination by significantly increasing the time spent on the rotarod bar. CONCLUSION: We successfully developed and validated a new portable and programmable stimulator for freely moving rats that delivers a large range of stimulation parameters using bilateral biphasic current-control and charge balancing to maximize tissue safety. This device can be used to test deep brain stimulation in different animal models of human brain diseases.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Humanos , Movimiento , Oxidopamina/toxicidad , Enfermedad de Parkinson/terapia , Ratas
5.
J Neurophysiol ; 120(6): 2719-2729, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133383

RESUMEN

The rapid development of wireless communications has raised questions about their potential health risks. So far, the only identified biological effects of radiofrequency fields (RF) are known to be caused by heating, but the issue of potential nonthermal biological effects, especially on the central nervous system (CNS), remains open. We previously reported a decrease in the firing and bursting rates of neuronal cultures exposed to a Global System for Mobile (GSM) RF field at 1,800 MHz for 3 min (Moretti D, Garenne A, Haro E, Poulleier de Gannes F, Lagroye I, Lévêque P, Veyret B, Lewis N. Bioelectromagnetics 34: 571-578, 2013). The aim of the present work was to assess the dose-response relationship for this effect and also to identify a potential differential response elicited by pulse-modulated GSM and continuous-wave (CW) RF fields. Spontaneous bursting activity of neuronal cultures from rat embryonic cortices was recorded using 60-electrode multielectrode arrays (MEAs). At 17-28 days in vitro, the neuronal cultures were subjected to 15-min RF exposures, at specific absorption rates (SAR) ranging from 0.01 to 9.2 W/kg. Both GSM and CW signals elicited a clear decrease in bursting rate during the RF exposure phase. This effect became more marked with increasing SAR and lasted even beyond the end of exposure for the highest SAR levels. Moreover, the amplitude of the effect was greater with the GSM signal. Altogether, our experimental findings provide evidence for dose-dependent effects of RF signals on the bursting rate of neuronal cultures and suggest that part of the mechanism is nonthermal. NEW & NOTEWORTHY In this study, we investigated the effects of some radiofrequency (RF) exposure parameters on the electrical activity of neuronal cultures. We detected a clear decrease in bursting activity, dependent on exposure duration. The amplitude of this effect increased with the specific absorption rate (SAR) level and was greater with Global System for Mobile signal than with continuous-wave signal, at the same average SAR. Our experiment provides unique evidence of a decrease in electrical activity of cortical neuronal cultures during RF exposure.


Asunto(s)
Potenciales de Acción/efectos de la radiación , Neuronas/efectos de la radiación , Ondas de Radio , Animales , Células Cultivadas , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
6.
Sensors (Basel) ; 18(7)2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29966339

RESUMEN

Enhanced understanding and control of electrophysiology mechanisms are increasingly being hailed as key knowledge in the fields of modern biology and medicine. As more and more excitable cell mechanics are being investigated and exploited, the need for flexible electrophysiology setups becomes apparent. With that aim, we designed Multimed, which is a versatile hardware platform for the real-time recording and processing of biosignals. Digital processing in Multimed is an arrangement of generic processing units from a custom library. These can freely be rearranged to match the needs of the application. Embedded onto a Field Programmable Gate Array (FPGA), these modules utilize full-hardware signal processing to lower processing latency. It achieves constant latency, and sub-millisecond processing and decision-making on 64 channels. The FPGA core processing unit makes Multimed suitable as either a reconfigurable electrophysiology system or a prototyping platform for VLSI implantable medical devices. It is specifically designed for open- and closed-loop experiments and provides consistent feedback rules, well within biological microseconds timeframes. This paper presents the specifications and architecture of the Multimed system, then details the biosignal processing algorithms and their digital implementation. Finally, three applications utilizing Multimed in neuroscience and diabetes research are described. They demonstrate the system’s configurability, its multi-channel, real-time processing, and its feedback control capabilities.


Asunto(s)
Investigación Biomédica/métodos , Fenómenos Electrofisiológicos/fisiología , Neurociencias/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Diabetes Mellitus , Retroalimentación , Humanos , Factores de Tiempo
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1970-1973, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29060280

RESUMEN

Functional Electrical Stimulation can be used to restore motor functions loss consecutive to spinal cord injury, such as respiratory deficiency due to paralysis of ventilatory muscles. This paper presents a fully configurable IC-centered stimulator designed to investigate muscle stimulation paradigms. It provides 8 current stimulation channels with high-voltage compliance and real-time operation capabilities, to enable a wide range of FES applications. The stimulator can be used in a standalone mode, or within a closed-loop setup. Primary in vivo results show successful drive of respiratory muscles stimulation using a computer-based dedicated controller.


Asunto(s)
Músculos Respiratorios , Estimulación Eléctrica , Terapia por Estimulación Eléctrica , Humanos , Parálisis , Traumatismos de la Médula Espinal
8.
Front Neurosci ; 10: 67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27013936

RESUMEN

Neural prostheses based on electrical microstimulation offer promising perspectives to restore functions following lesions of the central nervous system (CNS). They require the identification of appropriate stimulation sites and the coordination of their activation to achieve the restoration of functional activity. On the long term, a challenging perspective is to control microstimulation by artificial neural networks hybridized to the living tissue. Regarding the use of this strategy to restore locomotor activity in the spinal cord, to date, there has been no proof of principle of such hybrid approach driving intraspinal microstimulation (ISMS). Here, we address a first step toward this goal in the neonatal rat spinal cord isolated ex vivo, which can display locomotor-like activity while offering an easy access to intraspinal circuitry. Microelectrode arrays were inserted in the lumbar region to determine appropriate stimulation sites to elicit elementary bursting patterns on bilateral L2/L5 ventral roots. Two intraspinal sites were identified at L1 level, one on each side of the spinal cord laterally from the midline and approximately at a median position dorso-ventrally. An artificial CPG implemented on digital integrated circuit (FPGA) was built to generate alternating activity and was hybridized to the living spinal cord to drive electrical microstimulation on these two identified sites. Using this strategy, sustained left-right and flexor-extensor alternating activity on bilateral L2/L5 ventral roots could be generated in either whole or thoracically transected spinal cords. These results are a first step toward hybrid artificial/biological solutions based on electrical microstimulation for the restoration of lost function in the injured CNS.

9.
IEEE Trans Biomed Circuits Syst ; 10(1): 72-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25546861

RESUMEN

This paper describes a Deep Brain Stimulation device, portable, for chronic experiments on rodents in the context of Parkinson's disease. Our goal is to equip the animal with a device that mimics the human therapeutic conditions. It implies to respect a set of properties such as bilateral current-mode and charge-balanced stimulation, as well as programmability, low power consumption and re-usability to finally reach a suitable weight for long-term experiments. After the analysis of the solutions found in the literature, the full design of the device is explained. First, the stimulation front-end circuit driven by a processor unit, then the choice of supply sources which is a critical point for the weight and life-time of our system. Our low cost system has been realized using commercial discrete components and the overall power consumption was minimized. We achieved 6 days of maximal current stimulation with the chosen battery for a weight of 13.8 g . Finally, the device was carried out in vivo on rats during a 3 weeks experiment as the used implantation technique allows battery changing. This experiment also permits to emphasize the mechanical aspects including the packaging and electrodes holding.


Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Enfermedad de Parkinson/terapia , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrónica Médica , Diseño de Equipo , Humanos , Masculino , Ratas
10.
Bioelectromagnetics ; 34(8): 571-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23913345

RESUMEN

The central nervous system is the most likely target of mobile telephony radiofrequency (RF) field exposure in terms of biological effects. Several electroencephalography (EEG) studies have reported variations in the alpha-band power spectrum during and/or after RF exposure, in resting EEG and during sleep. In this context, the observation of the spontaneous electrical activity of neuronal networks under RF exposure can be an efficient tool to detect the occurrence of low-level RF effects on the nervous system. Our research group has developed a dedicated experimental setup in the GHz range for the simultaneous exposure of neuronal networks and monitoring of electrical activity. A transverse electromagnetic (TEM) cell was used to expose the neuronal networks to GSM-1800 signals at a SAR level of 3.2 W/kg. Recording of the neuronal electrical activity and detection of the extracellular spikes and bursts under exposure were performed using microelectrode arrays (MEAs). This work provides the proof of feasibility and preliminary results of the integrated investigation regarding exposure setup, culture of the neuronal network, recording of the electrical activity, and analysis of the signals obtained under RF exposure. In this pilot study on 16 cultures, there was a 30% reversible decrease in firing rate (FR) and bursting rate (BR) during a 3 min exposure to RF. Additional experiments are needed to further characterize this effect.


Asunto(s)
Teléfono Celular , Red Nerviosa/citología , Red Nerviosa/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Ondas de Radio/efectos adversos , Animales , Corteza Cerebral/citología , Proyectos Piloto , Radiometría , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...