Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 979: 176823, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032763

RESUMEN

Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.

3.
J Cosmet Dermatol ; 23(2): 563-575, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37909853

RESUMEN

BACKGROUND: Dandruff caused by Malassezia furfur is a prevailing fungal infection. Although ketoconazole (KTZ) is widely intended for anti-dandruff treatment, poor solubility, and epidermal permeability limits its use and the marketed KTZ shampoo adversely effects scalp and hair. OBJECTIVE: To prepare a novel shampoo loaded with KTZ-coated zinc oxide nanoparticles using green tea extract and evaluate its antifungal activity. METHODS: The KTZ-coated zinc oxide nanoparticles was prepared by green synthesis and was characterized by UV, FTIR, XRD, and the drug entrapment efficiency was investigated. The antifungal activity of the nanoparticles with respect to standard drug, KTZ was tested against Malassezia furfur. Further, a novel antidandruff shampoo was developed by incorporating the prepared nanoparticles into the shampoo base. RESULTS: The formation of KTZ-coated ZnO nanoparticles was confirmed by UV and FTIR analysis. XRD analysis confirmed the amorphous phase of KTZ in nanoparticles. The drug entrapment efficiency was found to be 91.84%. The prepared nanoparticles showed enhanced activity against Malassezia furfur compared to drug of choice, KTZ (1%). The evaluation of shampoo showed an ideal result. CONCLUSION: KTZ-coated ZnO nanoparticles loaded novel shampoo in comparison to marketed anti-dandruff shampoo could be an effective alternate for the treatment of dandruff.


Asunto(s)
Caspa , Preparaciones para el Cabello , Malassezia , Nanopartículas , Óxido de Zinc , Humanos , Cetoconazol , Antifúngicos/uso terapéutico , Caspa/tratamiento farmacológico , Óxido de Zinc/farmacología , Preparaciones para el Cabello/farmacología , Antioxidantes/farmacología ,
4.
Mol Neurobiol ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091207

RESUMEN

Alzheimer's disease (AD), a neurodegenerative condition previously known to affect the older population, is also now seen in younger individuals. AD is often associated with cognitive decline and neuroinflammation elevation primarily due to amyloid ß (Aß) accumulation. Multiple pathological complications in AD call for therapies with a wide range of neuroprotection. Our study aims to evaluate the effect of N-acetyl-L-tryptophan (NAT) in ameliorating the cognitive decline and neuroinflammation induced by Aß 1-42 oligomers and to determine the therapeutic concentration of NAT in the brain. We administered Aß 1-42 oligomers in rats via intracerebroventricular (i.c.v.) injection to induce AD-like conditions. The NAT-treated animals lowered the cognitive decline in the Morris water maze characterized by shorter escape latency and increased path efficiency and platform entries. Interestingly, the hippocampus and frontal cortex showed downregulation of tumor necrosis factor, interleukin-6, and substance P levels. NAT treatment also reduced acetylcholinesterase activity and total and phosphorylated nuclear factor kappa B and Tau levels. Lastly, we observed upregulation of cAMP response element-binding protein 1 (CREB1) signaling. Surprisingly, our HPLC method was not sensitive enough to detect the therapeutic levels of NAT in the brain, possibly due to NAT concentrations being below the lowest limit of quantification of our validated method. To summarize, the administration of NAT significantly lowered cognitive decline, neuroinflammatory pathways, and Tau protein and triggered the upregulation of CREB1 signaling, suggesting its neuroprotective role in AD-like conditions.

5.
Organogenesis ; 19(1): 2278236, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37965897

RESUMEN

In drug development, conventional preclinical and clinical testing stages rely on cell cultures and animal experiments, but these methods may fall short of fully representing human biology. To overcome this limitation, the emergence of organ-on-a-chip (OOC) technology has sparked interest as a transformative approach in drug testing research. By closely replicating human organ responses to external signals, OOC devices hold immense potential in revolutionizing drug efficacy and safety predictions. This review focuses on the advancements, applications, and prospects of OOC devices in drug testing. Based on the latest advances in the field of OOC systems and their clinical applications, this review reflects the effectiveness of OOC devices in replacing human volunteers in certain clinical studies. This review underscores the critical role of OOC technology in transforming drug testing methodologies.


Asunto(s)
Dispositivos Laboratorio en un Chip , Sistemas Microfisiológicos , Animales , Humanos , Desarrollo de Medicamentos , Técnicas de Cultivo de Célula
6.
J Biomol Struct Dyn ; : 1-16, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695658

RESUMEN

Urinary tract infections (UTIs) caused by Gram-negative bacteria E. coli is responsible for 80-90% of uncomplicated cases in women. The increased prevalence of antibiotic resistance has made the management of UTIs more challenging. Plant-derived compounds have long been used to treat various diseases, and constitute an alternative to antibiotic resistance. Curcumin (CUR), a naturally occurring polyphenolic phytoconstituent obtained from Curcuma longa is endowed with diverse medicinal properties. The present study aims to form a complex of CUR with Sulfobutyl ether-ß-cyclodextrin (SBEßCD) to overcome the poor solubility and bioavailability of CUR and to evaluate the antimicrobial activity of CUR-SBEßCD. Phase solubility studies and spectral characterization showed the entrapment of CUR in the SBEßCD cavity. In silico docking studies performed to investigate the complexation process of CUR with SBEßCD, revealed that the methoxy group and OH group of CUR interacted with SBEßCD. The cytotoxicity and HET-CAM assays confirmed that CUR-SBEßCD was non-irritant. The prepared complex investigated with the disc diffusion method showed antimicrobial activity with a zone of inhibition (ZOI) of 13 mm against Escherichia coli (E. coli) and 11.5 mm against Staphylococcus aureus (S. aureus) whereas CUR alone did not show any ZOI. It can be concluded that prepared CUR-SBEßCD demonstrated superior antimicrobial activity and therefore can be a promising alternative for the treatment of UTIs.Communicated by Ramaswamy H. Sarma.

7.
Adv Ther ; 40(8): 3332-3359, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289410

RESUMEN

Fungal keratitis, an ocular fungal infection, is one of the leading causes of monocular blindness. Natamycin has long been considered the mainstay drug used for treating fungal keratitis and is the only US Food and Drug Administration (USFDA)-approved drug, commercially available as a topical 5% w/v suspension. Furthermore, ocular fungal infection treatment takes a few weeks to months to recover, and the available marketed antifungal suspensions are associated with poor residence time, limited bioavailability (< 5%) and high dosing frequency as well as minor irritation and discomfort. Despite these challenges, natamycin is still the preferred drug choice for treating fungal keratitis, as it has fewer side effects and less ocular toxicity and is more effective against Fusarium species than other antifungal agents. Several novel therapeutic approaches for the topical delivery of natamycin have been reported to overcome the challenges posed by the conventional dosage forms and to improve ocular bioavailability for the efficient management of fungal keratitis. Current progress in the delivery systems uses approaches aimed at improving the corneal residence time, bioavailability and antifungal potency, thereby reducing the dose and dosing frequency of natamycin. In this review, we discuss the various strategies explored to overcome the challenges present in ocular drug delivery of natamycin and improve its bioavailability for ocular therapeutics.


Asunto(s)
Infecciones Fúngicas del Ojo , Queratitis , Humanos , Natamicina/uso terapéutico , Natamicina/farmacología , Antifúngicos/uso terapéutico , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Córnea
8.
Life Sci ; 317: 121463, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731648

RESUMEN

Dry eye disease is a highly prevalent ocular condition that significantly affects the quality of life and presents a major challenge in ophthalmology. Animal models play a crucial role in investigating the pathophysiology and developing effective treatments. The goal of this study was to compare and standardize two dry eye disease rodent models and explore their recovery aspects. We have standardized benzalkonium chloride and scopolamine-induced dry eye disease models which represents two different classes of the dry eye i.e., evaporative dry eye and aqueous deficient dry eye, respectively. After the development of dry eye conditions, a self-recovery period of seven days was granted to assess the reversal of the induced changes. The dry eye condition was assessed by measuring tear volume, corneal slit lamp imaging, and histological examination of the cornea, the lacrimal and the harderian gland. The study indicated the development of chronic inflammation of the cornea and lacrimal gland in the case of benzalkonium after five days of the treatment, while the scopolamine treated group showed chronic inflammation of the lacrimal gland after five days and corneal inflammation after seven days of administration. The recovery study suggested that after discontinuation of inducing agent, the dry eye symptoms were still persistent suggesting the utility of the model in evaluating dry eye treatments. The study highlights the comparative changes in both models along with recovery which can serve as a base for drug discovery and development against dry eye disease.


Asunto(s)
Síndromes de Ojo Seco , Aparato Lagrimal , Animales , Compuestos de Benzalconio/efectos adversos , Escopolamina/efectos adversos , Roedores , Calidad de Vida , Síndromes de Ojo Seco/inducido químicamente , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/patología , Aparato Lagrimal/patología , Inflamación/patología , Estándares de Referencia , Modelos Animales de Enfermedad
9.
Biol Trace Elem Res ; 201(3): 1026-1050, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35467267

RESUMEN

Cervical cancer is an aggressive type of cancer affecting women worldwide. Many affected individuals rely on smear tests for the diagnosis, surgery, chemotherapy, or radiation for their treatment. However, due to a broad set of undesired results and side-effects associated with the existing protocols, the search for better diagnostic and therapeutic interventions is a never-ending pursuit. In the purview, the bio-concentration of trace elements (copper, selenium, zinc, iron, arsenic, manganese, and cadmium) is seen to fluctuate during the occurrence of cervical cancer and its progression from pre-cancerous to metastatic nature. Thus, during the occurrence of cervical cancer, the detection of trace elements and their supplementation will prove to be highly advantageous in developing diagnostic tools and therapeutics, respectively. This review provides a detailed overview of cervical cancer, its encouragement by human papillomavirus infections, the mechanism of pathology, and resistance. Majorly, the review emphasizes the less explored role of trace elements, their contribution to the growth and inhibition of cervical cancer. Numerous clinical trials have been listed, thereby providing a comprehensive reference to the exploration of trace elements in the management of cervical cancer.


Asunto(s)
Infecciones por Papillomavirus , Selenio , Oligoelementos , Neoplasias del Cuello Uterino , Femenino , Humanos , Virus del Papiloma Humano , Manganeso , Zinc , Cobre
10.
Colloids Surf B Biointerfaces ; 220: 112892, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36219888

RESUMEN

Systemic delivery of amikacin is a widely adopted treatment modality for severe infections like sepsis. However, the current course of treatment requires repeated bolus doses of amikacin, prolonged hospitalization, and continuous therapeutic monitoring to manage the severe adverse effects. Amikacin has short half-life, which further challenges the delivery of sufficient systemic concentrations when administered by intravenous route. To solve this issue, novel delivery systems, amikacin liposomes (Ak-lip) were developed and evaluated for its antibacterial efficacy (agar plate diffusion and resazurin microtiter assay) and in vivo drug release in Sprague-Dawley rats. The Ak-lip were prepared by modified thin film hydration method and optimized based on particle size and Zeta potential. The zone of inhibition for Ak-lip and amikacin was found to be 22 mm and 26 mm against Staphylococcus aureus. The minimum inhibitory concentrations (MIC) of amikacin and Ak-lip against Staphylococcus aureus were found to be 3 µg/mL and 9 µg/mL, and for Pseudomonas aeruginosa were 0.6 µg/mL and 0.9 µg/mL respectively. The in vivo pharmacokinetic parameters were determined using Gastroplus™. A significant difference in the pharmacokinetic parameters (AUC, Cmax) was observed between amikacin and Ak-lip. The developed formulation showed good colloidal stability and sustained release profile up to 72 h which can reduce dosing frequency, minimize hospitalization and improve bactericidal activity at lower concentrations paving the path for improved therapeutic interventions in the treatment of sepsis.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Ratas , Animales , Amicacina/farmacología , Liposomas/farmacología , Ratas Sprague-Dawley , Antibacterianos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Sepsis/tratamiento farmacológico
11.
Carbohydr Polym ; 297: 120007, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184135

RESUMEN

According to the global mapping of dry eye disease (DED), nearly 5 to 50 % of people suffer from DED, and this number is on the rise. The drug of choice Cyclosporine A (CsA) exhibits poor ocular bioavailability due to high molecular weight and lipophilicity. Moreover, formulations of CsA currently available are in the form of oil-based emulsions that are known to cause ocular irritation and pain. In this study, sulfobutylether-ß-cyclodextrin (SBE-ß-CD) based binary and ternary supramolecular complexes of CsA were developed as completely oil-free, and particle-free eye drops to treat DED. The physicochemical characterizations were supplemented with relevant in silico studies, to ascertain the findings. Further, the efficacy of the complexes was evaluated in the scopolamine-induced mouse model of DED. The complexation improved the CsA solubility by ~21-fold, with ~4-fold improvement in dissolution and transcorneal permeation. The non-irritancy and non-toxicity were confirmed by hen's egg chorioallantoic membrane assay and cytotoxicity assay using human corneal epithelial cells, respectively. The in vivo treatment with the ternary CD complex demonstrated better management of the dry eye supported by the tear volume assessment, corneal fluorescein staining, and histopathological studies of the cornea, lacrimal gland, and harderian gland. The study demonstrates the potential of the supramolecular complex as an alternative to the oil-based formulation of eye drops for drugs that show low solubility and poor corneal permeation.


Asunto(s)
Ciclodextrinas , Síndromes de Ojo Seco , Animales , Pollos , Córnea , Ciclosporina/química , Ciclosporina/farmacología , Ciclosporina/uso terapéutico , Síndromes de Ojo Seco/tratamiento farmacológico , Femenino , Fluoresceína , Humanos , Ratones , Soluciones Oftálmicas/farmacología , Soluciones Oftálmicas/uso terapéutico , Derivados de Escopolamina/uso terapéutico
12.
Artículo en Inglés | MEDLINE | ID: mdl-35993995

RESUMEN

The aqueous solubility of active drug moiety plays a crucial role in the development of an efficacious formulation. The poor aqueous solubility of BCS class II and IV drugs is manifested as poor bioavailability. Preparation of cyclodextrin inclusion complex to improve the solubility, stability, and bioavailability is a well-established technique. The latest trend in cyclodextrin research is focused on ternary complexes wherein an auxiliary agent such as water-soluble polymers, organic ions, metals, or amino acids is incorporated in the inclusion complex. The cyclodextrin-based supramolecular ternary complex offers significant advantages over binary complex specifically for oral drug delivery. Compared with the binary complex, the ternary complex exhibits better complexation efficiency and stability constant. Moreover, the ternary complex has a major advantage of reducing the concentration of cyclodextrin required to achieve maximum solubility and stability. Lately, in silico molecular modeling has gained tremendous attention as a preliminary tool to evaluate the cyclodextrin-based ternary or binary complex which has been discussed. This review gives an insight into various ternary agents explored worldwide, significant observations, safety, and clinical studies carried out on ternary cyclodextrin complexes.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Ciclodextrinas/química , Estabilidad de Medicamentos , Humanos , Preparaciones Farmacéuticas/química , Solubilidad , Agua/química , beta-Ciclodextrinas/química
13.
J Fluoresc ; 32(4): 1517-1527, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35526207

RESUMEN

Curcumin (CUR), a natural polyphenolic compound extracted from the rhizomes of Curcuma longa, is used as a pharmaceutical agent, spice in food, and as a dye. Currently, CUR is being investigated for cancer treatment in Phase-II clinical trials. CUR also possesses excellent activities like anti-inflammatory, anti-microbial, and anti-oxidant, therefore quality control is crucial. The present research work was to develop a new, simple, validated and time-saving rapid 96-well plate spectrofluorimetric method for the determination of CUR. The developed method was compared with routinely used high performance liquid chromatography (HPLC) technique. The developed method were found to be linear in the concentration range of 15 to 3900 ng/mL with R2 ≥ 0.9983 for spectrofluorimetric and 50-7500 ng/mL with R2 ≥ 0.9999 for HPLC method. Accuracy, intraday and interday precision was adequate, with RSD lower than the suggested limits. The limits for the detection and the quantification of CUR were 7 and 15 ng/mL for spectrofluorimetric, and 25 and 50 ng/mL for HPLC respectively. The Bland-Altman analysis demonstrated the similarities between the two methods. The 96-well plate method was successfully applied to determine CUR in solid lipid nanoparticles (SLNs) and chitosan nanoparticles (Chi-NPs). The developed spectrofluorimetric method can hence serve as a possible replacement for the HPLC method for the quantification of CUR in healthcare and food products.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/química , Liposomas , Nanopartículas/química , Espectrometría de Fluorescencia
14.
Cell Signal ; 94: 110325, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367363

RESUMEN

Efforts to discover antiviral drugs and diagnostic platforms have intensified to an unprecedented level since the outbreak of COVID-19. Nano-sized endosomal vesicles called exosomes have gained considerable attention from researchers due to their role in intracellular communication to regulate the biological activity of target cells through cargo proteins, nucleic acids, and lipids. According to recent studies, exosomes play a vital role in viral diseases including covid-19, with their interaction with the host immune system opening the door to effective antiviral treatments. Utilizing the intrinsic nature of exosomes, it is imperative to elucidate how exosomes exert their effect on the immune system or boost viral infectivity. Exosome biogenesis machinery is hijacked by viruses to initiate replication, spread infection, and evade the immune response. Exosomes, however, also participate in protective mechanisms by triggering the innate immune system. Besides that, exosomes released from the cells can carry a robust amount of information about the diseased state, serving as a potential biomarker for detecting viral diseases. This review describes how exosomes increase virus infectivity, act as immunomodulators, and function as a potential drug delivery carrier and diagnostic biomarker for diseases caused by HIV, Hepatitis, Ebola, and Epstein-Barr viruses. Furthermore, the review analyzes various applications of exosomes within the context of COVID-19, including its management.


Asunto(s)
COVID-19 , Exosomas , Virosis , Antivirales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Biomarcadores/metabolismo , COVID-19/diagnóstico , Endosomas/metabolismo , Exosomas/metabolismo , Humanos , Virosis/diagnóstico , Virosis/metabolismo
15.
Luminescence ; 37(6): 930-943, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35322527

RESUMEN

An aminoglycoside antibiotic, amikacin, is used to treat severe and recurring bacterial infections. Due to the absence of a chromophore, however, amikacin must be extensively derivatized before being quantified, both in analytical and bioanalytical samples. In this study, for the first time, we developed a simple and sensitive method for measuring amikacin sulfate using spectrofluorimetry with a 96-well plate reader, based on the design of the experiment's approach. To develop a robust and reproducible spectrofluorimetric method, the influence of essential attributes, namely pH of the buffer, heating temperature, and concentration of reagents, were evaluated using univariate analysis followed by multivariate analysis (central composite design). International Conference of Harmonization guidelines were used to validate the optimized method. The developed technique is linear from 1.9 to 10 µg/ml with a regression coefficient of 0.9991. The detection and quantification limits were 0.649 µg/ml and 1.9 µg/ml, respectively. For the developed method, both intraday and interday precision (%RSD) were less than 5%. Using the method, amikacin concentrations were quantified in prepared amikacin liposomes and commercial formulations of Amicin®. The developed method greatly reduces sample volume and is a rapid, high throughput microplate-based fluorescence approach for the convenient and cost-effective measurement of amikacin in pharmaceutical formulations. In comparison with previously published approaches, the suggested method allowed for quick analysis of a high number of samples in a short amount of time (96 samples in 125 sec), resulting in an average duration of analysis of 1.3 sec per sample.


Asunto(s)
Amicacina , Antibacterianos , Amicacina/análisis , Antibacterianos/análisis , Composición de Medicamentos , Fluorometría
16.
Curr Pharm Des ; 28(20): 1643-1659, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35209818

RESUMEN

The oral route is the most preferred delivery route for drug administration due to its advantages, such as lower cost, improved patient compliance, no need for trained personnel, and less severity of drug reactions in general. The major problem with new molecules in the drug discovery pipeline is poor solubility and dissolution rate that ultimately results in low oral bioavailability. Numerous techniques are available for solubility and bioavailability (BA) enhancement, but out of all, solid dispersion (SD) is proven to be the most feasible due to fewer issues in manufacturing, processing, storage, and transportation. In the past few years, SD has been extensively applied to reinforce the common issues of insoluble drugs. Currently, many hydrophobic and hydrophilic polymers are used to prepare either immediate release or controlled release SDs. Therefore, the biological behavior of the SDs is contingent upon the use of appropriate polymeric carriers and methods of preparation. The exploration of novel carriers and methodologies in SD technology leads to improved BA and therapeutic effectiveness. Moreover, the clinical applicability of SD-based formulations has been increased with the discovery of novel polymeric carriers. In this review, emphasis is laid down on the present status of recent generations of SDs (i.e., surfactant and controlled release polymer-based SD) and their application in modifying the physical properties of the drug and modulation of pharmacological response in different ailments.


Asunto(s)
Polímeros , Tensoactivos , Disponibilidad Biológica , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Excipientes , Humanos , Polímeros/química , Solubilidad , Tensoactivos/química
17.
Mol Pharm ; 19(1): 258-273, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34928610

RESUMEN

Fungal keratitis is one of the leading causes of ophthalmic mycosis affecting the vision due to corneal scarring. Voriconazole (VRC) is the most preferred azole antifungal agent for treating ocular mycotic infections. Ocular drug delivery is challenging due to the shorter corneal residence time of the formulation requiring frequent administration, leading to poor patient compliance. The present study aimed at improving the solubility, transcorneal permeation, and efficacy of voriconazole via the formation of cyclodextrin-based ternary complexes and incorporation of the complex into mucoadhesive films. A phase solubility study suggested a ∼14-fold improvement in VRC solubility, whereas physicochemical characterization confirmed the inclusion of VRC in the cyclodextrin inner cavity. In silico docking studies were performed to predict the docking conformation and stability of the inclusion complex. Complex-loaded films showed sustained release of voriconazole from the films and improved transcorneal permeation by ∼4-fold with an improved flux of 8.36 µg/(cm2 h) for ternary complex-loaded films compared to 1.86 µg/(cm2 h) for the pure VRC film. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and hen's egg-chorioallantoic membrane test (HET-CAM) assays confirmed that the complexes and ocular films were nonirritant and safe for ocular administration. The antifungal study performed using Aspergillus fumigatus and Fusarium oxysporum suggested improved antifungal activity compared to the pure drug film. In conclusion, the supramolecular cyclodextrin ternary complex proved to be a promising strategy for enhancing the solubility and permeability and augmenting the antifungal activity of voriconazole in the management of fungal keratitis.


Asunto(s)
Antifúngicos/administración & dosificación , Ciclodextrinas , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Fusariosis/tratamiento farmacológico , Fusarium/efectos de los fármacos , Queratitis/tratamiento farmacológico , Voriconazol/administración & dosificación , Administración Oftálmica , Animales , Antifúngicos/uso terapéutico , Córnea/citología , Córnea/efectos de los fármacos , Infecciones Fúngicas del Ojo/microbiología , Fusariosis/microbiología , Cabras , Humanos , Queratitis/microbiología , Solubilidad , Voriconazol/uso terapéutico
18.
Int J Pharm ; 613: 121409, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34952148

RESUMEN

The incidence of corneal fungal infections continues to be a growing concern worldwide. Ocular delivery of anti-fungal drugs is challenging due to the anatomical and physiological barriers of the eye. The ocular bioavailability of ketoconazole (KTZ), a widely prescribed antifungal agent, is hampered by its limited aqueous solubility and permeation. In the study, the physicochemical properties of KTZ were improved by complexation with sulfobutylether-ß-cyclodextrin (SBE-ß-CD).KTZ-SBE-ß-CD complex was studied in silico with docking and dynamics simulations, followed by wet-lab experiments.The optimized KTZ-SBE-ß-CD complex was loaded into a thermosensitivein situ gel to increase corneal bioavailability. The supramolecular complex increased the solubility of KTZ by 5-folds and exhibited a 10-fold increment in drug release compared to the pure KTZ. Owing to the diffusion, thein situ gel exhibited a more sustained drug release profile. Theex vivocorneal permeation studies showed higher permeation from KTZ-SBE-ß-CD in situ gel (flux of ∼19.11 µg/cm2/h) than KTZin situ gel (flux of ∼1.17 µg/cm2/h). The cytotoxicity assays and the hen's egg chorioallantoic membrane assay (HET-CAM) confirmed the formulations' safety and non-irritancy. In silico guided design of KTZ-SBE-ß-CD inclusion complexes successfully modified the physicochemical properties of KTZ. In addition, the loading of the KTZ-SBE-ß-CD complex into an in situ gel significantly increased the precorneal retention and permeation of KTZ, indicating that the developed formulation is a viable modality to treat fungal keratitis.


Asunto(s)
Pollos , Cetoconazol , Animales , Córnea , Liberación de Fármacos , Femenino , Solubilidad
19.
J Chromatogr Sci ; 60(6): 584-594, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34435614

RESUMEN

A novel isocratic stability-indicating chromatographic method was developed, optimized and validated using Design-Expert® following ICH guidelines for the quantification of Timolol maleate (TM). The intrinsic stability of TM was assessed by force degradation studies, which concluded no extensive degradation except under alkaline and oxidative conditions. TM was quantified accurately in the surfactant-based elastic vesicular system by separating it on Hypersil BDS C8 column using triethylamine in H2O (0.15%v/v; pH 3.0) and acetonitrile (ACN; 65:35%v/v). The influence of variable factors like mobile phase pH, injection volume (µL), flow rate (mL/min) and ACN content (%) on method responses were assessed using a full factorial design. The method was linear between 0.05 and 10 µg/mL with an R2 value of 0.9993. Limit of detection and limit of quantification were found to be 0.90 and 27.2 ng/mL. The method was specific, with recovery in plain drug solution of 89-92% and elastic nanovesicles of 90-93%. The experimental model was significant (P < 0.0001) as indicated by deliberate changes in the method analyzed through analysis of variance. The total drug content in elastic nanovesicles was estimated to be 9.53 ± 0.01 mg/20-mL dispersion and entrapment efficiency was 44.52 ± 0.73%. The developed method was rapid, economic and precise for the quantification of TM in bulk and vesicular system.


Asunto(s)
Tensoactivos , Timolol , Cromatografía Líquida de Alta Presión/métodos , Estabilidad de Medicamentos , Excipientes , Reproducibilidad de los Resultados , Timolol/análisis
20.
Life Sci ; 284: 119883, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390724

RESUMEN

Hypodermic delivery of amikacin is a widely adopted treatment modality for severe infections, including bacterial septicemia, meningitis, intra-abdominal infections, burns, postoperative complications, and urinary tract infections in both paediatric and adult populations. In most instances, the course of treatment requires repeated bolus doses of amikacin, prolonged hospitalization, and the presence of a skilled healthcare worker for administration and continuous therapeutic monitoring to manage the severe adverse effects. Amikacin is hydrophilic and exhibits a short half-life, which further challenges the delivery of sufficient systemic concentrations when administered by the oral or transdermal route. In this purview, the exploitation of novel controlled and sustained release drug delivery platforms is warranted. Furthermore, it has been shown that novel delivery systems are capable of increasing the antibacterial activity of amikacin at lower doses when compared to the conventional formulations and also aid in overcoming the development of drug-resistance, which currently is a significant threat to the healthcare system worldwide. The current review presents a comprehensive overview of the developmental history of amikacin, the mechanism of action in virulent strains as well as the occurrence of resistance, and various emerging drug delivery solutions developed both by the academia and the industry. The examples outlined within the review provides significant pieces of evidence on novel amikacin formulations in the field of antimicrobial research paving the path for future therapeutic interventions that will result in improved clinical outcome.


Asunto(s)
Amicacina/administración & dosificación , Sistemas de Liberación de Medicamentos , Amicacina/química , Amicacina/farmacocinética , Animales , Ensayos Clínicos como Asunto , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Nanopartículas/química , Nanopartículas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA