Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 22(3): 516-522, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32974990

RESUMEN

Indoleamine-2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the rate-limiting step in the kynurenine pathway of tryptophan (TRP) metabolism. As it is an inflammation-induced immunoregulatory enzyme, pharmacological inhibition of IDO1 activity is currently being pursued as a potential therapeutic tool for the treatment of cancer and other disease states. As such, a detailed understanding of the mechanism of action of IDO1 inhibitors with various mechanisms of inhibition is of great interest. Comparison of an apo-form-binding IDO1 inhibitor (GSK5628) to the heme-coordinating compound, epacadostat (Incyte), allows us to explore the details of the apo-binding inhibition of IDO1. Herein, we demonstrate that GSK5628 inhibits IDO1 by competing with heme for binding to a heme-free conformation of the enzyme (apo-IDO1), whereas epacadostat coordinates its binding with the iron atom of the IDO1 heme cofactor. Comparison of these two compounds in cellular systems reveals a long-lasting inhibitory effect of GSK5628, previously undescribed for other known IDO1 inhibitors. Detailed characterization of this apo-binding mechanism for IDO1 inhibition might help design superior inhibitors or could confer a unique competitive advantage over other IDO1 inhibitors vis-à-vis specificity and pharmacokinetic parameters.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Conformación Molecular
2.
Sci Rep ; 9(1): 13078, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511536

RESUMEN

Significant resource is spent by drug discovery project teams to generate numerous, yet unique target constructs for the multiple platforms used to drive drug discovery programs including: functional assays, biophysical studies, structural biology, and biochemical high throughput screening campaigns. To improve this process, we developed Modular Protein Ligation (MPL), a combinatorial reagent platform utilizing Expressed Protein Ligation to site-specifically label proteins at the C-terminus with a variety of cysteine-lysine dipeptide conjugates. Historically, such proteins have been chemically labeled non-specifically through surface amino acids. To demonstrate the feasibility of this approach, we first applied MPL to proteins of varying size in different target classes using different recombinant protein expression systems, which were then evaluated in several different downstream assays. A key advantage to the implementation of this paradigm is that one construct can generate multiple final products, significantly streamlining the reagent generation for multiple early drug discovery project teams.


Asunto(s)
Descubrimiento de Drogas/métodos , Proteínas/metabolismo , Animales , Estudios de Factibilidad , Humanos , Ligandos , Ratones , Modelos Moleculares , Conformación Proteica , Proteínas/química
3.
Assay Drug Dev Technol ; 11(5): 308-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23772552

RESUMEN

Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK1201TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC50 values of 12.5 µM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Fluorescencia/métodos , Sumoilación/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Sitios de Unión , Unión Proteica , Proteínas Represoras
4.
Protein Expr Purif ; 65(2): 251-60, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19297698

RESUMEN

We describe here two strategies to produce biologically active chemokines with authentic N-terminal amino acid residues. The first involves producing the target chemokine with an N-terminal 6xHis-SUMO tag in Escherichia coli as inclusion bodies. The fusion protein is solubilized and purified with Ni-NTA-agarose in denaturing reagents. This is further followed by tag removal and refolding in a redox refolding buffer. The second approach involves expressing the target chemokine with an N-terminal 6xHis-Trx-SUMO tag in an engineered E. coli strain that facilitates formation of disulfide bonds in the cytoplasm. Following purification of the fusion protein via Ni-NTA and tag removal, the target chemokine is refolded without redox buffer and purified by reverse phase chromatography. Using the procedures, we have produced more than 15 biologically active chemokines, with a yield of up to 15 mg/L.


Asunto(s)
Quimiocinas/biosíntesis , Quimiocinas/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Quimiocinas/aislamiento & purificación , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidación-Reducción , Reacción en Cadena de la Polimerasa , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas Recombinantes de Fusión/aislamiento & purificación
5.
Appl Environ Microbiol ; 74(4): 950-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18083862

RESUMEN

Minimization of chemical modifications during the production of proteins for pharmaceutical and medical applications is of fundamental and practical importance. The gluconoylation of heterologously expressed protein which is observed in Escherichia coli BL21(DE3) constitutes one such undesired posttranslational modification. We postulated that formation of gluconoylated/phosphogluconoylated products of heterologous proteins is caused by the accumulation of 6-phosphogluconolactone due to the absence of phosphogluconolactonase (PGL) in the pentose phosphate pathway. The results obtained demonstrate that overexpression of a heterologous PGL in BL21(DE3) suppresses the formation of the gluconoylated adducts in the therapeutic proteins studied. When this E. coli strain was grown in high-cell-density fed-batch cultures with an extra copy of the pgl gene, we found that the biomass yield and specific productivity of a heterologous 18-kDa protein increased simultaneously by 50 and 60%, respectively. The higher level of PGL expression allowed E. coli strain BL21(DE3) to satisfy the extra demand for precursors, as well as the energy requirements, in order to replicate plasmid DNA and express heterologous genes, as metabolic flux analysis showed by the higher precursor and NADPH fluxes through the oxidative branch of the pentose phosphate shunt. This work shows that E. coli strain BL21(DE3) can be used as a host to produce three different proteins, a heterodimer of liver X receptors, elongin C, and an 18-kDa protein. This is the first report describing a novel and general strategy for suppressing this nonenzymatic modification by metabolic pathway engineering.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Gluconatos/metabolismo , Ingeniería de Proteínas/métodos , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Recombinantes/metabolismo , Hidrolasas de Éster Carboxílico/deficiencia , Hidrolasas de Éster Carboxílico/genética , Cromatografía Líquida de Alta Presión , Escherichia coli/metabolismo , Fluorometría , Espectrometría de Masas , Procesamiento Proteico-Postraduccional/genética
6.
Proc Natl Acad Sci U S A ; 103(20): 7625-30, 2006 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-16684877

RESUMEN

Heat shock protein (Hsp)90 is emerging as an important therapeutic target for the treatment of cancer. Two analogues of the Hsp90 inhibitor geldanamycin are currently in clinical trials. Geldanamycin (GA) and its analogues have been reported to bind purified Hsp90 with low micromolar potency, in stark contrast to their low nanomolar antiproliferative activity in cell culture and their potent antitumor activity in animal models. Several models have been proposed to account for the approximately 100-fold-greater potency in cell culture, including that GA analogues bind with greater affinity to a five-protein Hsp90 complex than to Hsp90 alone. We have determined that GA and the fluorescent analogue BODIPY-GA (BDGA) both demonstrate slow, tight binding to purified Hsp90. BDGA, used to characterize the kinetics of ligand-Hsp90 interactions, was found to bind Hsp90alpha with k(off) = 2.5 x 10(-3) min(-1), t(1/2) = 4.6 h, and Ki* = 10 nM. It was found that BDGA binds to a functional multiprotein Hsp90 complex with kinetics and affinity identical to that of Hsp90 alone. Also, BDGA binds to Hsp90 from multiple cell lysates in a time-dependent manner with similar kinetics. Therefore, our results indicate that the high potency of GA in cell culture and in vivo can be accounted for by its time-dependent, tight binding to Hsp90 alone. In the broader context, these studies highlight the essentiality of detailed biochemical characterization of drug-target interactions for the effective translation of in vitro pharmacology to cellular and in vivo efficacy.


Asunto(s)
Antibióticos Antineoplásicos , Proteínas HSP90 de Choque Térmico , Quinonas , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Benzoquinonas , Compuestos de Boro/química , Compuestos de Boro/metabolismo , Células Cultivadas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas , Unión Proteica , Quinonas/química , Quinonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...