Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Med ; 4(12): 913-927.e3, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37963467

RESUMEN

BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.


Asunto(s)
Ontologías Biológicas , Humanos , Enfermedades Raras , Programas Informáticos , Simulación por Computador
2.
medRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37503136

RESUMEN

Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).

3.
Nat Commun ; 14(1): 4392, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474567

RESUMEN

Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.


Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia , Humanos , Fenotipo , Epilepsia/genética , Estudio de Asociación del Genoma Completo , Convulsiones
4.
Artif Intell Med ; 139: 102523, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100502

RESUMEN

The Human Phenotype Ontology (HPO) is a dictionary of >15,000 clinical phenotypic terms with defined semantic relationships, developed to standardize phenotypic analysis. Over the last decade, the HPO has been used to accelerate the implementation of precision medicine into clinical practice. In addition, recent research in representation learning, specifically in graph embedding, has led to notable progress in automated prediction via learned features. Here, we present a novel approach to phenotype representation by incorporating phenotypic frequencies based on 53 million full-text health care notes from >1.5 million individuals. We demonstrate the efficacy of our proposed phenotype embedding technique by comparing our work to existing phenotypic similarity-measuring methods. Using phenotype frequencies in our embedding technique, we are able to identify phenotypic similarities that surpass current computational models. Furthermore, our embedding technique exhibits a high degree of agreement with domain experts' judgment. By transforming complex and multidimensional phenotypes from the HPO format into vectors, our proposed method enables efficient representation of these phenotypes for downstream tasks that require deep phenotyping. This is demonstrated in a patient similarity analysis and can further be applied to disease trajectory and risk prediction.


Asunto(s)
Medicina de Precisión , Semántica , Humanos , Fenotipo
5.
Brain ; 146(3): 850-857, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36315647

RESUMEN

Early infantile developmental and epileptic encephalopathies are devastating conditions, generally of genetic origin, but the pathological mechanisms often remain obscure. A major obstacle in this field of research is the difficulty of studying cortical brain development in humans, at the relevant time period in utero. To address this, we established an in vitro assay to study the impact of gene variants on the developing human brain by using living organotypic cultures of the human subplate and neighbouring cortical regions, prepared from ethically sourced, 14-17 post-conception week brain tissue (www.hdbr.org). We were able to maintain cultures for several months, during which time the gross anatomical structures of the cortical plate, subplate and marginal zone persisted, while neurons continued to develop morphologically and form new synaptic networks. This preparation thus permits the study of genetic manipulations and their downstream effects on an intact developing human cortical network. We focused on STXBP1 haploinsufficiency, which is among the most common genetic causes of developmental and epileptic encephalopathy. This was induced using shRNA interference, leading to impaired synaptic function and a reduced density of glutamatergic synapses. We thereby provide a critical proof-of-principle for how to study the impact of any gene of interest on the development of the human cortex.


Asunto(s)
Encefalopatías , Epilepsia Generalizada , Humanos , Neuronas/metabolismo , Sinapsis/metabolismo , Encéfalo/metabolismo , Proteínas Munc18/genética
6.
Front Cell Dev Biol ; 10: 1019715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568968

RESUMEN

Synapsin-I (SYN1) is a presynaptic phosphoprotein crucial for synaptogenesis and synaptic plasticity. Pathogenic SYN1 variants are associated with variable X-linked neurodevelopmental disorders mainly affecting males. In this study, we expand on the clinical and molecular spectrum of the SYN1-related neurodevelopmental disorders by describing 31 novel individuals harboring 22 different SYN1 variants. We analyzed newly identified as well as previously reported individuals in order to define the frequency of key features associated with these disorders. Specifically, behavioral disturbances such as autism spectrum disorder or attention deficit hyperactivity disorder are observed in 91% of the individuals, epilepsy in 82%, intellectual disability in 77%, and developmental delay in 70%. Seizure types mainly include tonic-clonic or focal seizures with impaired awareness. The presence of reflex seizures is one of the most representative clinical manifestations related to SYN1. In more than half of the cases, seizures are triggered by contact with water, but other triggers are also frequently reported, including rubbing with a towel, fever, toothbrushing, fingernail clipping, falling asleep, and watching others showering or bathing. We additionally describe hyperpnea, emotion, lighting, using a stroboscope, digestive troubles, and defecation as possible triggers in individuals with SYN1 variants. The molecular spectrum of SYN1 variants is broad and encompasses truncating variants (frameshift, nonsense, splicing and start-loss variants) as well as non-truncating variants (missense substitutions and in-frame duplications). Genotype-phenotype correlation revealed that epileptic phenotypes are enriched in individuals with truncating variants. Furthermore, we could show for the first time that individuals with early seizures onset tend to present with severe-to-profound intellectual disability, hence highlighting the existence of an association between early seizure onset and more severe impairment of cognitive functions. Altogether, we present a detailed clinical description of the largest series of individuals with SYN1 variants reported so far and provide the first genotype-phenotype correlations for this gene. A timely molecular diagnosis and genetic counseling are cardinal for appropriate patient management and treatment.

8.
Neurology ; 99(3): e221-e233, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35851549

RESUMEN

BACKGROUND AND OBJECTIVES: Pathogenic STXBP1 variants cause a severe early-onset developmental and epileptic encephalopathy (STXBP1-DEE). We aimed to investigate the natural history of STXBP1-DEE in adults focusing on seizure evolution, the presence of movement disorders, and the level of functional (in)dependence. METHODS: In this observational study, patients with a minimum age of 18 years carrying a (likely) pathogenic STXBP1 variant were recruited through medical genetics departments and epilepsy centers. Treating clinicians completed clinical questionnaires and performed semistructured video examinations while performing tasks from the (modified) Unified Parkinson Disease Rating Scale when possible. RESULTS: Thirty adult patients were included for summary statistics, with video recordings available for 19 patients. The median age at last follow-up was 24 years (range 18-58 years). All patients had epilepsy, with a median onset age of 3.5 months. At last follow-up, 80% of adults had treatment-resistant seizures despite long periods of seizure freedom in 37%. Tonic-clonic, focal, and tonic seizures were most frequent in adults. Epileptic spasms, an unusual feature beyond infancy, were present in 3 adults. All individuals had developmental impairment. Periods of regression were present in 59% and did not always correlate with flare-ups in seizure activity. Eighty-seven percent had severe or profound intellectual disability, 42% had autistic features, and 65% had significant behavioral problems. Video examinations showed gait disorders in all 12 patients able to walk, including postural abnormalities with external rotation of the feet, broad-based gait, and asymmetric posture/dystonia. Tremor, present in 56%, was predominantly of the intention/action type. Stereotypies were seen in 63%. Functional outcome concerning mobility was variable ranging from independent walking (50%) to wheelchair dependence (39%). Seventy-one percent of adults were nonverbal, and all were dependent on caregivers for most activities of daily living. DISCUSSION: STXBP1-DEE warrants continuous monitoring for seizures in adult life. Periods of regression are more frequent than previously established and can occur into adulthood. Movement disorders are often present and involve multiple systems. Although functional mobility is variable in adulthood, STXBP1-DEE frequently leads to severe cognitive impairments and a high level of functional dependence. Understanding the natural history of STXBP1-DEE is important for prognostication and will inform future therapeutic trials.


Asunto(s)
Epilepsia , Trastornos del Movimiento , Proteínas Munc18 , Actividades Cotidianas , Adolescente , Adulto , Electroencefalografía , Humanos , Lactante , Persona de Mediana Edad , Trastornos del Movimiento/genética , Proteínas Munc18/genética , Mutación , Convulsiones/genética , Adulto Joven
9.
Epilepsy Behav Rep ; 19: 100556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712061

RESUMEN

SMC1A variants are known to cause Cornelia de Lange Syndrome (CdLS) which encompasses a clinical spectrum of intellectual disability, dysmorphic features (long or thick eyebrows, a hypomorphic philtrum and small nose) and, in some cases, epilepsy. More recently, SMC1A truncating variants have been described as the cause of a neurodevelopmental disorder with early-childhood onset drug-resistant epilepsy with seizures that occur in clusters, similar to that seen in PCDH19-related epilepsy, but without the classical features of CdLS. Here, we report the case of a 28-year-old woman with a de novo heterozygous truncating variant in SMC1A who unusually presented with seizures at the late age of 12 years and had normal development into adulthood.

10.
Epilepsy Behav Rep ; 19: 100549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620305

RESUMEN

Pathogenic variants in BRAT1 are associated with a spectrum of clinical syndromes ranging from Lethal Neonatal Rigidity and Multifocal Seizure syndrome (RMFSL) to Neurodevelopmental Disorder with Cerebellar Atrophy and with or without Seizures (NEDCAS). RMFSL is characterized by early-onset multifocal seizures with microcephaly. Death occurs during infancy although a less severe course with later onset seizures and longer survival into childhood has been described. Here, we summarize published cases of BRAT1 disorders and present the case of a 20-year-old man with two heterozygous BRAT1 variants and a relatively later age of seizure onset with survival into adulthood. This case expands the spectrum of disease associated with BRAT1 variants and highlights the utility of genetic testing to identify the cause of developmental and epileptic encephalopathies where clinical heterogeneity within a spectrum of disease exists.

11.
Hum Mutat ; 43(11): 1642-1658, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35460582

RESUMEN

Making a specific diagnosis in neurodevelopmental disorders is traditionally based on recognizing clinical features of a distinct syndrome, which guides testing of its possible genetic etiologies. Scalable frameworks for genomic diagnostics, however, have struggled to integrate meaningful measurements of clinical phenotypic features. While standardization has enabled generation and interpretation of genomic data for clinical diagnostics at unprecedented scale, making the equivalent breakthrough for clinical data has proven challenging. However, increasingly clinical features are being recorded using controlled dictionaries with machine readable formats such as the Human Phenotype Ontology (HPO), which greatly facilitates their use in the diagnostic space. Improving the tractability of large-scale clinical information will present new opportunities to inform genomic research and diagnostics from a clinical perspective. Here, we describe novel approaches for computational phenotyping to harmonize clinical features, improve data translation through revising domain-specific dictionaries, quantify phenotypic features, and determine clinical relatedness. We demonstrate how these concepts can be applied to longitudinal phenotypic information, which represents a critical element of developmental disorders and pediatric conditions. Finally, we expand our discussion to clinical data derived from electronic medical records, a largely untapped resource of deep clinical information with distinct strengths and weaknesses.


Asunto(s)
Registros Electrónicos de Salud , Genómica , Niño , Humanos , Fenotipo
12.
Brain ; 145(5): 1668-1683, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35190816

RESUMEN

Disease-causing variants in STXBP1 are among the most common genetic causes of neurodevelopmental disorders. However, the phenotypic spectrum in STXBP1-related disorders is wide and clear correlations between variant type and clinical features have not been observed so far. Here, we harmonized clinical data across 534 individuals with STXBP1-related disorders and analysed 19 973 derived phenotypic terms, including phenotypes of 253 individuals previously unreported in the scientific literature. The overall phenotypic landscape in STXBP1-related disorders is characterized by neurodevelopmental abnormalities in 95% and seizures in 89% of individuals, including focal-onset seizures as the most common seizure type (47%). More than 88% of individuals with STXBP1-related disorders have seizure onset in the first year of life, including neonatal seizure onset in 47%. Individuals with protein-truncating variants and deletions in STXBP1 (n = 261) were almost twice as likely to present with West syndrome and were more phenotypically similar than expected by chance. Five genetic hotspots with recurrent variants were identified in more than 10 individuals, including p.Arg406Cys/His (n = 40), p.Arg292Cys/His/Leu/Pro (n = 30), p.Arg551Cys/Gly/His/Leu (n = 24), p.Pro139Leu (n = 12), and p.Arg190Trp (n = 11). None of the recurrent variants were significantly associated with distinct electroclinical syndromes, single phenotypic features, or showed overall clinical similarity, indicating that the baseline variability in STXBP1-related disorders is too high for discrete phenotypic subgroups to emerge. We then reconstructed the seizure history in 62 individuals with STXBP1-related disorders in detail, retrospectively assigning seizure type and seizure frequency monthly across 4433 time intervals, and retrieved 251 anti-seizure medication prescriptions from the electronic medical records. We demonstrate a dynamic pattern of seizure control and complex interplay with response to specific medications particularly in the first year of life when seizures in STXBP1-related disorders are the most prominent. Adrenocorticotropic hormone and phenobarbital were more likely to initially reduce seizure frequency in infantile spasms and focal seizures compared to other treatment options, while the ketogenic diet was most effective in maintaining seizure freedom. In summary, we demonstrate how the multidimensional spectrum of phenotypic features in STXBP1-related disorders can be assessed using a computational phenotype framework to facilitate the development of future precision-medicine approaches.


Asunto(s)
Epilepsia , Espasmos Infantiles , Electroencefalografía , Epilepsia/genética , Humanos , Lactante , Proteínas Munc18/genética , Estudios Retrospectivos , Convulsiones/genética , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/genética
13.
Neurology ; 97(6): e577-e586, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34078716

RESUMEN

OBJECTIVE: To describe the clinical and genetic findings in a cohort of individuals with bathing epilepsy, a rare form of reflex epilepsy. METHODS: We investigated by Sanger and targeted resequencing the SYN1 gene in 12 individuals from 10 different families presenting with seizures triggered primarily by bathing or showering. An additional 12 individuals with hot-water epilepsy were also screened. RESULTS: In all families with bathing epilepsy, we identified 8 distinct pathogenic or likely pathogenic variants and 2 variants of unknown significance in SYN1, 9 of which are novel. Conversely, none of the individuals with hot-water epilepsy displayed SYN1 variants. In mutated individuals, seizures were typically triggered by showering or bathing regardless of the water temperature. Additional triggers included fingernail clipping, haircutting, or watching someone take a shower. Unprovoked seizures and a variable degree of developmental delay were also common. CONCLUSION: Bathing epilepsy is genetically distinct reflex epilepsy caused mainly by SYN1 mutations.


Asunto(s)
Baños , Epilepsia Refleja/genética , Epilepsia Refleja/fisiopatología , Higiene , Sinapsinas/genética , Adolescente , Niño , Preescolar , Femenino , Calor , Humanos , Masculino , Persona de Mediana Edad , Linaje , Agua
14.
Epilepsia ; 62(6): 1293-1305, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949685

RESUMEN

OBJECTIVE: The clinical features of epilepsy determine how it is defined, which in turn guides management. Therefore, consideration of the fundamental clinical entities that comprise an epilepsy is essential in the study of causes, trajectories, and treatment responses. The Human Phenotype Ontology (HPO) is used widely in clinical and research genetics for concise communication and modeling of clinical features, allowing extracted data to be harmonized using logical inference. We sought to redesign the HPO seizure subontology to improve its consistency with current epileptological concepts, supporting the use of large clinical data sets in high-throughput clinical and research genomics. METHODS: We created a new HPO seizure subontology based on the 2017 International League Against Epilepsy (ILAE) Operational Classification of Seizure Types, and integrated concepts of status epilepticus, febrile, reflex, and neonatal seizures at different levels of detail. We compared the HPO seizure subontology prior to, and following, our revision, according to the information that could be inferred about the seizures of 791 individuals from three independent cohorts: 2 previously published and 150 newly recruited individuals. Each cohort's data were provided in a different format and harmonized using the two versions of the HPO. RESULTS: The new seizure subontology increased the number of descriptive concepts for seizures 5-fold. The number of seizure descriptors that could be annotated to the cohort increased by 40% and the total amount of information about individuals' seizures increased by 38%. The most important qualitative difference was the relationship of focal to bilateral tonic-clonic seizure to generalized-onset and focal-onset seizures. SIGNIFICANCE: We have generated a detailed contemporary conceptual map for harmonization of clinical seizure data, implemented in the official 2020-12-07 HPO release and freely available at hpo.jax.org. This will help to overcome the phenotypic bottleneck in genomics, facilitate reuse of valuable data, and ultimately improve diagnostics and precision treatment of the epilepsies.


Asunto(s)
Modelos Neurológicos , Convulsiones/fisiopatología , Macrodatos , Estudios de Cohortes , Interpretación Estadística de Datos , Epilepsias Parciales/clasificación , Epilepsias Parciales/fisiopatología , Epilepsia , Epilepsia Generalizada/clasificación , Epilepsia Generalizada/fisiopatología , Epilepsia Tónico-Clónica/clasificación , Epilepsia Tónico-Clónica/fisiopatología , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo , Convulsiones/clasificación , Convulsiones/genética
15.
Eur J Hum Genet ; 29(11): 1690-1700, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34031551

RESUMEN

While genetic studies of epilepsies can be performed in thousands of individuals, phenotyping remains a manual, non-scalable task. A particular challenge is capturing the evolution of complex phenotypes with age. Here, we present a novel approach, applying phenotypic similarity analysis to a total of 3251 patient-years of longitudinal electronic medical record data from a previously reported cohort of 658 individuals with genetic epilepsies. After mapping clinical data to the Human Phenotype Ontology, we determined the phenotypic similarity of individuals sharing each genetic etiology within each 3-month age interval from birth up to a maximum age of 25 years. 140 of 600 (23%) of all 27 genes and 3-month age intervals with sufficient data for calculation of phenotypic similarity were significantly higher than expect by chance. 11 of 27 genetic etiologies had significant overall phenotypic similarity trajectories. These do not simply reflect strong statistical associations with single phenotypic features but appear to emerge from complex clinical constellations of features that may not be strongly associated individually. As an attempt to reconstruct the cognitive framework of syndrome recognition in clinical practice, longitudinal phenotypic similarity analysis extends the traditional phenotyping approach by utilizing data from electronic medical records at a scale that is far beyond the capabilities of manual phenotyping. Delineation of how the phenotypic homogeneity of genetic epilepsies varies with age could improve the phenotypic classification of these disorders, the accuracy of prognostic counseling, and by providing historical control data, the design and interpretation of precision clinical trials in rare diseases.


Asunto(s)
Heterogeneidad Genética , Pruebas Genéticas/estadística & datos numéricos , Fenotipo , Espasmos Infantiles/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Sitios de Carácter Cuantitativo , Espasmos Infantiles/diagnóstico
16.
Genet Med ; 23(7): 1263-1272, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33731876

RESUMEN

PURPOSE: Pathogenic variants in SCN2A cause a wide range of neurodevelopmental phenotypes. Reports of genotype-phenotype correlations are often anecdotal, and the available phenotypic data have not been systematically analyzed. METHODS: We extracted phenotypic information from primary descriptions of SCN2A-related disorders in the literature between 2001 and 2019, which we coded in Human Phenotype Ontology (HPO) terms. With higher-level phenotype terms inferred by the HPO structure, we assessed the frequencies of clinical features and investigated the association of these features with variant classes and locations within the NaV1.2 protein. RESULTS: We identified 413 unrelated individuals and derived a total of 10,860 HPO terms with 562 unique terms. Protein-truncating variants were associated with autism and behavioral abnormalities. Missense variants were associated with neonatal onset, epileptic spasms, and seizures, regardless of type. Phenotypic similarity was identified in 8/62 recurrent SCN2A variants. Three independent principal components accounted for 33% of the phenotypic variance, allowing for separation of gain-of-function versus loss-of-function variants with good performance. CONCLUSION: Our work shows that translating clinical features into a computable format using a standardized language allows for quantitative phenotype analysis, mapping the phenotypic landscape of SCN2A-related disorders in unprecedented detail and revealing genotype-phenotype correlations along a multidimensional spectrum.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2 , Espasmos Infantiles , Estudios de Asociación Genética , Humanos , Recién Nacido , Canal de Sodio Activado por Voltaje NAV1.2/genética , Fenotipo , Convulsiones
17.
Epilepsy Behav ; 116: 107791, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33578223

RESUMEN

Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change.


Asunto(s)
COVID-19/epidemiología , Cambio Climático , Epilepsia/epidemiología , Salud Global/tendencias , Salud Pública/tendencias , Animales , COVID-19/prevención & control , Muerte Súbita , Epilepsia/terapia , Calor/efectos adversos , Humanos , Humedad/efectos adversos , Privación de Sueño/epidemiología , Privación de Sueño/terapia , Tiempo (Meteorología)
18.
Nucleic Acids Res ; 49(D1): D1207-D1217, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33264411

RESUMEN

The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.


Asunto(s)
Ontologías Biológicas , Biología Computacional/métodos , Bases de Datos Factuales , Enfermedad/genética , Genoma , Fenotipo , Programas Informáticos , Animales , Modelos Animales de Enfermedad , Genotipo , Humanos , Recién Nacido , Cooperación Internacional , Internet , Tamizaje Neonatal/métodos , Farmacogenética/métodos , Terminología como Asunto
19.
Am J Hum Genet ; 107(4): 683-697, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853554

RESUMEN

More than 100 genetic etiologies have been identified in developmental and epileptic encephalopathies (DEEs), but correlating genetic findings with clinical features at scale has remained a hurdle because of a lack of frameworks for analyzing heterogenous clinical data. Here, we analyzed 31,742 Human Phenotype Ontology (HPO) terms in 846 individuals with existing whole-exome trio data and assessed associated clinical features and phenotypic relatedness by using HPO-based semantic similarity analysis for individuals with de novo variants in the same gene. Gene-specific phenotypic signatures included associations of SCN1A with "complex febrile seizures" (HP: 0011172; p = 2.1 × 10-5) and "focal clonic seizures" (HP: 0002266; p = 8.9 × 10-6), STXBP1 with "absent speech" (HP: 0001344; p = 1.3 × 10-11), and SLC6A1 with "EEG with generalized slow activity" (HP: 0010845; p = 0.018). Of 41 genes with de novo variants in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n = 16, p < 0.0001), STXBP1 (n = 14, p = 0.0021), and KCNB1 (n = 6, p = 0.011). Including genetic and phenotypic data of control subjects increased phenotypic similarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of primarily defining disease entities through similar clinical features.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Munc18/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética , Espasmos Infantiles/genética , Trastornos del Habla/genética , Preescolar , Estudios de Cohortes , Femenino , Expresión Génica , Ontología de Genes , Humanos , Masculino , Mutación , Fenotipo , Convulsiones/clasificación , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Semántica , Canales de Potasio Shab/genética , Espasmos Infantiles/clasificación , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/fisiopatología , Trastornos del Habla/clasificación , Trastornos del Habla/diagnóstico , Trastornos del Habla/fisiopatología , Terminología como Asunto , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...