Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1661-1670, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37043326

RESUMEN

Cardiac arrest is a common cause of death annually mainly due to postcardiac arrest syndrome that leads to multiple organ global hypoxia and dysfunction after resuscitation. The ability to quantify vasculature changes and tissue oxygenation is crucial to adapt patient treatment in order to minimize major outcomes after resuscitation. For the first time, we applied high-resolution ultrasound associated with photoacoustic imaging (PAI) to track neurovascular oxygenation and cardiac function trajectories in a murine model of cardiac arrest and resuscitation. We report the preservation of brain oxygenation is greater compared to that in peripheral tissues during the arrest. Furthermore, distinct patterns of cerebral oxygen decay may relate to the support of vital brain functions. In addition, we followed trajectories of cerebral perfusion and cardiac function longitudinally after induced cardiac arrest and resuscitation. Volumetric cerebral oxygen saturation (sO2) decreased 24 h postarrest, but these levels rebounded at one week. However, systolic and diastolic cardiac dysfunction persisted throughout and correlated with cerebral hypoxia. Pathophysiologic biomarker trends, identified via cerebral PAI in preclinical models, could provide new insights into understanding the pathophysiology of cardiac arrest and resuscitation.


Asunto(s)
Paro Cardíaco , Técnicas Fotoacústicas , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Resucitación/métodos , Paro Cardíaco/diagnóstico por imagen , Paro Cardíaco/terapia , Paro Cardíaco/complicaciones , Hipoxia/diagnóstico por imagen , Hipoxia/complicaciones
2.
Lasers Surg Med ; 53(4): 557-566, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32956499

RESUMEN

BACKGROUND AND OBJECTIVES: Spatial frequency domain imaging (SFDI), an optical imaging technique capable of quantitatively measuring tissue hemodynamics over a large field-of-view, has captured the interest of scientists and clinicians due to its ability to image rapidly and noninvasively. The goal of this study was to apply SFDI in a preclinical murine model to assess its ability to measure hemodynamic changes due to hindlimb ischemia in vivo longitudinally. STUDY DESIGN/MATERIALS AND METHODS: Complete unilateral femoral artery ligation was performed on a total of nine C57BL/6J mice to induce ischemia in the left hindlimb. Changes in vascular perfusion in each mouse were monitored through SFDI acquisition of both the ischemic and control limbs throughout the course of 4 weeks. High-frequency pulsed-wave Doppler ultrasound was also acquired to confirm occlusion of the left femoral artery post-ligation compared with the control limb, while histological analysis was used to quantify femoral artery lumen shape and size. RESULTS: Tissue oxygen saturation in the ischemic limb normalized to the control limb decreased from a ratio of 0.96 ± 0.06 at baseline to 0.86 ± 0.10 at day 1, then 0.94 ± 0.06 at day 3, followed by 0.95 ± 0.14 at day 7, 0.91 ± 0.09 at day 14, 0.90 ± 0.09 at day 21, and 1.01 ± 0.09 at day 28. CONCLUSION: The results of this study indicate the utility of SFDI to detect hemodynamic changes in a preclinical murine model, as well as how to effectively use this tool to extract information regarding ischemia-induced hindlimb changes. In our model, we observed a decline in tissue oxygen saturation within one day post-ischemic injury, followed by a return to baseline values over the 4-week study period. While reducing skin artifacts and modifying camera hardware could still improve this murine imaging approach, our multimodality study presented here suggests that SFDI can be used to reliably characterize ischemia-mediated changes in a clinically relevant mouse model of peripheral arterial disease. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Asunto(s)
Isquemia , Enfermedad Arterial Periférica , Animales , Modelos Animales de Enfermedad , Hemodinámica , Miembro Posterior , Isquemia/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético , Enfermedad Arterial Periférica/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...