Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microbiol Mol Biol Rev ; 88(2): e0015823, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38551349

RESUMEN

SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.


Asunto(s)
Bacillus subtilis , Reparación del ADN , Mutagénesis , Reparación del ADN/genética , Bacillus subtilis/genética , Bacillus subtilis/fisiología , Estrés Fisiológico/genética , Daño del ADN , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/genética , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo
2.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613897

RESUMEN

A previous proteomic study uncovered a relationship between nutritional stress and fluctuations in levels of diadenylate cyclases (DACs) and other proteins that regulate DAC activity, degrade, or interact with c-di-AMP, suggesting a possible role of this second messenger in B. subtilis stress-associated mutagenesis (SAM). Here, we investigated a possible role of c-di-AMP in SAM and growth-associated mutagenesis (GAM). Our results showed that in growing cells of B. subtilis YB955 (hisC952, metB25 and leuC427), the DACs CdaA and DisA, which play crucial roles in cell wall homeostasis and chromosomal fidelity, respectively, counteracted spontaneous and Mitomycin-C-induced mutagenesis. However, experiments in which hydrogen peroxide was used to induce mutations showed that single deficiencies in DACs caused opposite effects compared to each other. In contrast, in the stationary-phase, DACs promoted mutations in conditions of nutritional stress. These results tracked with intracellular levels of c-di-AMP, which are significantly lower in cdaA- and disA-deficient strains. The restoration of DAC-deficient strains with single functional copies of the cdaA and/or disA returned SAM and GAM levels to those observed in the parental strain. Taken together, these results reveal a role for c-di-AMP in promoting genetic diversity in growth-limiting conditions in B. subtilis. Finally, we postulate that this novel function of c-di-AMP can be exerted through proteins that possess binding domains for this second messenger and play roles in DNA repair, ion transport, transcriptional regulation, as well as oxidative stress protection.


Asunto(s)
Bacillus subtilis , Liasas de Fósforo-Oxígeno , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Mutagénesis , Liasas de Fósforo-Oxígeno/metabolismo , Proteómica
3.
Sci Rep ; 11(1): 2513, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510358

RESUMEN

During sporulation Bacillus subtilis Mfd couples transcription to nucleotide excision repair (NER) to eliminate DNA distorting lesions. Here, we report a significant decline in sporulation following Mfd disruption, which was manifested in the absence of external DNA-damage suggesting that spontaneous lesions activate the function of Mfd for an efficient sporogenesis. Accordingly, a dramatic decline in sporulation efficiency took place in a B. subtilis strain lacking Mfd and the repair/prevention guanine oxidized (GO) system (hereafter, the ∆GO system), composed by YtkD, MutM and MutY. Furthermore, the simultaneous absence of Mfd and the GO system, (i) sensitized sporulating cells to H2O2, and (ii) elicited spontaneous and oxygen radical-induced rifampin-resistance (Rifr) mutagenesis. Epifluorescence (EF), confocal and transmission electron (TEM) microscopy analyses, showed a decreased ability of ∆GO ∆mfd strain to sporulate and to develop the typical morphologies of sporulating cells. Remarkably, disruption of sda, sirA and disA partially, restored the sporulation efficiency of the strain deficient for Mfd and the ∆GO system; complete restoration occurred in the RecA- background. Overall, our results unveil a novel Mfd mechanism of transcription-coupled-repair (TCR) elicited by 8-OxoG which converges in the activation of a RecA-dependent checkpoint event that control the onset of sporulation in B. subtilis.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Reparación del ADN , Guanina/análogos & derivados , Rec A Recombinasas/metabolismo , Transcripción Genética , Bacillus subtilis/ultraestructura , Daño del ADN , Regulación Bacteriana de la Expresión Génica , Guanina/metabolismo , Mutación , Especies Reactivas de Oxígeno , Esporas Bacterianas
4.
J Bacteriol ; 202(9)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32041798

RESUMEN

We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilisIMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Reparación del ADN , Factores de Transcripción/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Daño del ADN , Regulación Bacteriana de la Expresión Génica , Mutagénesis , Mutación , Factores de Transcripción/genética
5.
Rev. iberoam. micol ; 36(1): 17-23, ene.-mar. 2019. tab, ilus, graf
Artículo en Inglés | IBECS | ID: ibc-185488

RESUMEN

Background: Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. In order to colonize the host, the pathogen must neutralize the reactive oxygen species produced by the phagocytic cells during the respiratory burst. Little is known about these mechanisms in S. schenckii. Aims: To identify the proteins differentially expressed after the exposure of S. schenckiisensu stricto to different concentrations of H2O2. Methods: Yeast cells of S. schenckiisensu stricto were exposed to increasing concentrations of H2O2. Proteins differentially expressed in response to oxidative stress were analyzed using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and identified by MALDI-MS/MS. RT-PCR assays were performed to evaluate the transcription of genes of the identified proteins. Results: Concentrations of H2O2 as high as 800 mM allowed cell growth, and 200 mM and 400mM were selected for comparative analysis by 2D-PAGE. This analysis revealed at least five differentially expressed proteins, which were identified as heat shock 70 kDa protein (Hsp70), chaperonin GroEL, elongation factor 1-β (EF1-β), a hypothetical protein, and mitochondrial peroxiredoxin (Prx1). RT-PCR revealed that the transcription of the genes coding for some of these proteins are differentially regulated. Conclusions: Based on these results, it is proposed that these proteins may be involved in the resistance of S. schenckii to oxidative stress, and play an important role in the fungus survival in the host


Antecedentes: La esporotricosis es una infección fúngica causada por el complejo Sporothrix schenckii. Para colonizar al huésped, los patógenos deben neutralizar las especies reactivas de oxígeno producidas por las células fagocíticas durante el estallido respiratorio. Poco se conoce sobre este mecanismo en S. schenckii. Objetivos: Identificar proteínas diferencialmente expresadas durante la exposición de S. schenckiisensu stricto a diferentes concentraciones de H2O2. Métodos: Levaduras de S. schenckiisensu stricto fueron expuestas a concentraciones crecientes de H2O2. Las proteínas diferencialmente expresadas en respuesta el estrés oxidativo fueron analizadas mediante electroforesis en geles de poliacrilamida en doble dimensión (2D-PAGE) e identificadas por MALDI-MS/MS. Se realizaron ensayos de RT-PCR para evaluar la transcripción de genes de las proteínas identificadas. Resultados: Concentraciones altas de H2O2 (800 mM) permitieron el crecimiento celular, y se seleccionaron las concentraciones de 200 y 400 mM para el análisis comparativo mediante 2D-PAGE. Este análisis reveló al menos cinco proteínas diferencialmente expresadas, identificadas como proteína de choque térmico de 70 kDa (Hsp70), chaperonina GroEL, factor de alargamiento 1-β (EF1-β), una proteína hipotética y peroxirredoxina mitocondrial (Prx1). La RT-PCR reveló que la transcripción de los genes que codifican para algunas de estas proteínas se regula diferencialmente. Conclusiones: Con estos resultados pensamos que estas proteínas podrían estar involucradas en la resistencia de S. schenckiisensu stricto al estrés oxidativo y jugar un papel importante en la supervivencia del hongo en el huésped


Asunto(s)
Antiinfecciosos Locales/farmacología , Proteínas Fúngicas/análisis , Proteínas Fúngicas/biosíntesis , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Sporothrix/efectos de los fármacos , Sporothrix/metabolismo , Antiinfecciosos Locales/administración & dosificación , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/administración & dosificación
6.
Rev Iberoam Micol ; 36(1): 17-23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30799196

RESUMEN

BACKGROUND: Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. In order to colonize the host, the pathogen must neutralize the reactive oxygen species produced by the phagocytic cells during the respiratory burst. Little is known about these mechanisms in S. schenckii. AIMS: To identify the proteins differentially expressed after the exposure of S. schenckiisensu stricto to different concentrations of H2O2. METHODS: Yeast cells of S. schenckiisensu stricto were exposed to increasing concentrations of H2O2. Proteins differentially expressed in response to oxidative stress were analyzed using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and identified by MALDI-MS/MS. RT-PCR assays were performed to evaluate the transcription of genes of the identified proteins. RESULTS: Concentrations of H2O2 as high as 800mM allowed cell growth, and 200mM and 400mM were selected for comparative analysis by 2D-PAGE. This analysis revealed at least five differentially expressed proteins, which were identified as heat shock 70kDa protein (Hsp70), chaperonin GroEL, elongation factor 1-ß (EF1-ß), a hypothetical protein, and mitochondrial peroxiredoxin (Prx1). RT-PCR revealed that the transcription of the genes coding for some of these proteins are differentially regulated. CONCLUSIONS: Based on these results, it is proposed that these proteins may be involved in the resistance of S. schenckii to oxidative stress, and play an important role in the fungus survival in the host.


Asunto(s)
Antiinfecciosos Locales/farmacología , Proteínas Fúngicas/análisis , Proteínas Fúngicas/biosíntesis , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Sporothrix/efectos de los fármacos , Sporothrix/metabolismo , Antiinfecciosos Locales/administración & dosificación , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/administración & dosificación
7.
J Bacteriol ; 201(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30745368

RESUMEN

Bacteria deploy global programs of gene expression, including components of the SOS response, to counteract the cytotoxic and genotoxic effects of environmental DNA-damaging factors. Here we report that genetic damage promoted by hexavalent chromium elicited the SOS response in Bacillus subtilis, as evidenced by the induction of transcriptional uvrA-lacZ, recA-lacZ, and P recA-gfp fusions. Accordingly, B. subtilis strains deficient in homologous recombination (RecA) and nucleotide excision repair (NER) (UvrA), components of the SOS response, were significantly more sensitive to Cr(VI) treatment than were cells of the wild-type strain. These results strongly suggest that Cr(VI) induces the formation in growing B. subtilis cells of cytotoxic and genotoxic bulky DNA lesions that are processed by RecA and/or the NER pathways. In agreement with this notion, Cr(VI) significantly increased the formation of DNA-protein cross-links (DPCs) and induced mutagenesis in recA- and uvrA-deficient B. subtilis strains, through a pathway that required YqjH/YqjW-mediated translesion synthesis. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves the formation of DPCs and that such deleterious effects are counteracted by both the NER and homologous recombination pathways, belonging to the RecA-dependent SOS system.IMPORTANCE It has been shown that, following permeation of cell barriers, Cr(VI) kills B. subtilis cells following a mechanism of reactive oxygen species-promoted DNA damage, which is counteracted by the guanine oxidized repair system. Here we report a distinct mechanism of Cr(VI)-promoted DNA damage that involves production of DPCs capable of eliciting the bacterial SOS response. We also report that the NER and homologous recombination (RecA) repair pathways, as well as low-fidelity DNA polymerases, counteract this metal-induced mechanism of killing in B. subtilis Hence, our results contribute to an understanding of how environmental pollutants activate global programs of gene expression that allow bacteria to contend with the cytotoxic and genotoxic effects of heavy metals.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Cromo/toxicidad , Daño del ADN/efectos de los fármacos , Reparación del ADN , Mutágenos/toxicidad , Rec A Recombinasas/metabolismo , Bacillus subtilis/metabolismo , Respuesta SOS en Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA