Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(32): eadi2718, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556548

RESUMEN

The Northwest Atlantic Ocean and Gulf of Mexico are among the fastest warming ocean regions, a trend that is expected to continue through this century with far-reaching implications for marine ecosystems. We examine the distribution of 12 highly migratory top predator species using predictive models and project expected habitat changes using downscaled climate models. Our models predict widespread losses of suitable habitat for most species, concurrent with substantial northward displacement of core habitats >500 km. These changes include up to >70% loss of suitable habitat area for some commercially and ecologically important species. We also identify predicted hot spots of multi-species habitat loss focused offshore of the U.S. Southeast and Mid-Atlantic coasts. For several species, the predicted changes are already underway, which are likely to have substantial impacts on the efficacy of static regulatory frameworks used to manage highly migratory species. The ongoing and projected effects of climate change highlight the urgent need to adaptively and proactively manage dynamic marine ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Océano Atlántico
2.
Ecol Appl ; 33(6): e2893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285072

RESUMEN

Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.


Asunto(s)
Biodiversidad , Tiburones , Animales , Peces , Explotaciones Pesqueras , Predicción , Ecosistema
3.
Sci Rep ; 10(1): 18822, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139744

RESUMEN

To protect the most vulnerable marine species it is essential to have an understanding of their spatiotemporal distributions. In recent decades, Bayesian statistics have been successfully used to quantify uncertainty surrounding identified areas of interest for bycatch species. However, conventional simulation-based approaches are often computationally intensive. To address this issue, in this study, an alternative Bayesian approach (Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation, INLA-SPDE) is used to predict the occurrence of Mobula mobular species in the eastern Pacific Ocean (EPO). Specifically, a Generalized Additive Model is implemented to analyze data from the Inter-American Tropical Tuna Commission's (IATTC) tropical tuna purse-seine fishery observer bycatch database (2005-2015). The INLA-SPDE approach had the potential to predict both the areas of importance in the EPO, that are already known for this species, and the more marginal hotspots, such as the Gulf of California and the Equatorial area which are not identified using other habitat models. Some drawbacks were identified with the INLA-SPDE database, including the difficulties of dealing with categorical variables and triangulating effectively to analyze spatial data. Despite these challenges, we conclude that INLA approach method is an useful complementary and/or alternative approach to traditional ones when modeling bycatch data to inform accurately management decisions.


Asunto(s)
Teorema de Bayes , Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Explotaciones Pesqueras/estadística & datos numéricos , Rajidae , Animales , Océano Pacífico
4.
PLoS One ; 14(8): e0220854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31390369

RESUMEN

In the eastern Pacific Ocean, the tropical tuna purse-seine fishery incidentally captures high numbers of five mobulid bycatch species; all of which are classified as mortalities by the Inter-American Tropical Tuna Commission due to uncertainties in post-release mortality rates. To date, the factors (operational or environmental) leading to the capture of these species by the fishery have not been well studied. Here, we developed Generalized Additive Models for fisheries observer data to analyze the relationships between the presence/absence of Mobula mobular bycatch and oceanographic conditions, the spatial and temporal variability in fishing location, and the set type (associated with dolphins, free-swimming tuna schools or floating objects). Our results suggest that chlorophyll concentration and sea surface height are the most important variables to describe the presence of M. mobular in conjunction with geographic location (latitude and longitude) and set type. Presence of the species was predicted in waters with chlorophyll concentrations between 0.5-1 mg·m-3 and with sea surface height values close to 0; which indicates direct relationships with productive upwelling systems. Seasonally, M. mobular was observed more frequently during December-January and August-September. We also found the highest probability of presence observed in School sets, followed by Dolphin sets. Three areas were observed as important hotspots: the area close to the coastal upwelling of northern Peru, the area west to Islands Colon Archipelago (Galapagos) and the area close to the Costa Rica Dome. This information is crucial to identify the mobulids habitat and hotspots that could be managed and protected under dynamic spatial management measures to reduce the mortality of mobulid rays in the eastern Pacific purse-seine fishery and, hence, ensure the sustainability of the populations of these iconic species.


Asunto(s)
Clorofila/análisis , Elasmobranquios , Ambiente , Estaciones del Año , Animales , Conservación de los Recursos Naturales , Costa Rica , Ecosistema , Océano Pacífico , Perú
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...