Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(10): 9611-9621, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37166018

RESUMEN

Metal-octaaminophthalocyanine (MOAPc)-based 2D conductive metal-organic frameworks (cMOFs) have shown great potential in several applications, including sensing, energy storage, and electrocatalysis, due to their bimetallic characteristics. Here, we report a detailed metal substitution study on a family of isostructural cMOFs with Co2+, Ni2+, and Cu2+ as both the metal nodes and the metal centers in the MOAPc ligands. We observed that different metal nodes had variations in the reaction kinetics, particle sizes, and crystallinities. Importantly, the electronic structure and conductivity were found to be dependent on both types of metal sites in the 2D cMOFs. Ni-NiOAPc was found to be the most conductive one among the nine possible combinations with a conductivity of 54 ± 4.8 mS/cm. DFT calculations revealed that monolayer Ni-NiOAPc has neither the smallest bandgap nor the highest charge carrier mobility. Hence its highest conductivity stems from its high crystallinity. Collectively, these results provide structure property relationships for MOAPc-based cMOFs with amino coordination units.

2.
J Colloid Interface Sci ; 645: 715-723, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37172481

RESUMEN

Understanding the behaviour of uranium waste, for disposal purposes, is crucial due to the correlation between pH values and the disposal of distinct types of waste, with low level waste typically associated with acidic pH values, and higher and intermediate level waste commonly related to alkaline pH values. We studied the adsorption of U(VI) on sandstone and volcanic rock surfaces at pH 5.5 and 11.5 in aqueous solutions with and without bicarbonate (2 mM HCO3-) using XAS and FTIR. In the sandstone system, U(VI) adsorbs as a bidentate complex to Si at pH 5.5 without bicarbonate and as uranyl carbonate species with bicarbonate. At pH 11.5 without bicarbonate, U(VI) adsorbs as monodentate complexes to Si and precipitates as uranophane. With bicarbonate at pH 11.5, U(VI) precipitated as a Na-clarkeite mineral or remained as a uranyl carbonate surface species. In the volcanic rock system, U(VI) adsorbed to Si as an outer sphere complex at pH 5.5, regardless of the presence of bicarbonate. At pH 11.5 without bicarbonate, U(VI) adsorbed as a monodentate complex to one Si atom and precipitated as a Na-clarkeite mineral. With bicarbonate at pH 11.5, U(VI) sorbed as a bidentate carbonate complex to one Si atom. These results provide insight into the behaviour of U(VI) in heterogeneous, real-world systems related to the disposal of radioactive waste.

3.
Environ Sci Technol ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633549

RESUMEN

Increased periods of bottom water anoxia in deep temperate lakes due to decreasing frequency and depth of water column mixing in a warming climate may result in the reductive dissolution of iron minerals and increased flux of nutrients from the sediment into the water column. Here, we assessed the sediment properties and reactivities under depleted oxygen concentrations of Lake Tahoe, a deep ultraoligotrophic lake in the Sierra Nevada mountain range. Using whole-core incubation experiments, we found that a decrease in dissolved oxygen concentration in the top 2 cm of the sediment resulted in an extension of the microbial iron reduction zone from below 4.5 to below 1.5 cm depth. Concentrations of reactive iron generally decreased with sediment depth, and microbial iron reduction seemingly ceased as concentrations of Fe(II) approximated concentrations of reactive iron. These findings suggest that microorganisms preferentially utilized reactive iron and/or iron minerals became less reactive due to mineral transformation and surface passivation. The estimated release of iron mineral-associated phosphorus is not expected to change Lake Tahoe's trophic state but will likely contribute to increased phytoplankton productivity if mixed into surface waters.

4.
Environ Sci Technol ; 56(23): 16822-16830, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36351078

RESUMEN

Arsenic (As)-bearing water treatment residuals (WTRs) from household sand filters are usually disposed on top of floodplain soils and may act as a secondary As contamination source. We hypothesized that open disposal of these filter-sands to soils will facilitate As release under reducing conditions. To quantify the mobilization risk of As, we incubated the filter-sand, the soil, and a mixture of the filter-sand and soil in anoxic artificial rainwater and followed the dynamics of reactive Fe and As in aqueous, solid, and colloidal phases. Microbially mediated Fe(III)/As(V) reduction led to the mobilization of 0.1-4% of the total As into solution with the highest As released from the mixture microcosms equaling 210 µg/L. Due to the filter-sand and soil interaction, Mössbauer and X-ray absorption spectroscopies indicated that up to 10% Fe(III) and 32% As(V) were reduced in the mixture microcosm. Additionally, the mass concentrations of colloidal Fe and As analyzed by single-particle ICP-MS decreased by 77-100% compared to the onset of reducing conditions with the highest decrease observed in the mixture setups (>95%). Overall, our study suggests that (i) soil provides bioavailable components (e.g., organic matter) that promote As mobilization via microbial reduction of As-bearing Fe(III) (oxyhydr)oxides and (ii) As mobilization as colloids is important especially right after the onset of reducing conditions but its importance decreases over time.


Asunto(s)
Arsénico , Purificación del Agua , Arsénico/metabolismo , Compuestos Férricos , Oxidación-Reducción , Suelo
5.
ACS Earth Space Chem ; 6(7): 1644-1654, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36238447

RESUMEN

We integrated aqueous chemistry, spectroscopy, and microbiology techniques to identify chemical and microbial processes affecting the release of arsenic (As), iron (Fe), and manganese (Mn) from contaminated sediments exposed to aerobic and anaerobic conditions. The sediments were collected from Cheyenne River Sioux Tribal lands in South Dakota, which has dealt with mining legacy for several decades. The range of concentrations of total As measured from contaminated sediments was 96 to 259 mg kg-1, which co-occurs with Fe (21 000-22 005 mg kg-1) and Mn (682-703 mg kg-1). The transition from aerobic to anaerobic redox conditions yielded the highest microbial diversity, and the release of the highest concentrations of As, Fe, and Mn in batch experiments reacted with an exogenous electron donor (glucose). The reduction of As was confirmed by XANES analyses when transitioning from aerobic to anaerobic conditions. In contrast, the releases of As, Fe and Mn after a reaction with phosphate was at least 1 order of magnitude lower compared with experiments amended with glucose. Our results indicate that mine waste sediments amended with an exogenous electron donor trigger microbial reductive dissolution caused by anaerobic respiration. These dissolution processes can affect metal mobilization in systems transitioning from aerobic to anaerobic conditions in redox gradients. Our results are relevant for natural systems, for surface and groundwater exchange, or other systems in which metal cycling is influenced by chemical and biological processes.

6.
Nat Mater ; 21(11): 1290-1297, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280703

RESUMEN

Stable catalysts are essential to address energy and environmental challenges, especially for applications in harsh environments (for example, high temperature, oxidizing atmosphere and steam). In such conditions, supported metal catalysts deactivate due to sintering-a process where initially small nanoparticles grow into larger ones with reduced active surface area-but strategies to stabilize them can lead to decreased performance. Here we report stable catalysts prepared through the encapsulation of platinum nanoparticles inside an alumina framework, which was formed by depositing an alumina precursor within a separately prepared porous organic framework impregnated with platinum nanoparticles. These catalysts do not sinter at 800 °C in the presence of oxygen and steam, conditions in which conventional catalysts sinter to a large extent, while showing similar reaction rates. Extending this approach to Pd-Pt bimetallic catalysts led to the small particle size being maintained at temperatures as high as 1,100 °C in air and 10% steam. This strategy can be broadly applied to other metal and metal oxides for applications where sintering is a major cause of material deactivation.


Asunto(s)
Nanopartículas del Metal , Platino (Metal) , Temperatura , Vapor , Óxido de Aluminio
7.
J Environ Chem Eng ; 10(5)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36060014

RESUMEN

We previously observed that phosphonate functionalized electrospun nanofibers can uptake U(VI), making them promising materials for sensing and water treatment applications. Here, we investigate the optimal fabrication of these materials and their mechanism of U(VI) binding under the influence of environmentally relevant ions (e.g., Ca2+ and CO 3 2 - ). We found that U(VI) uptake was greatest on polyacrylonitrile (PAN) functionalized with longer-chain phosphonate surfactants (e.g., hexa- and octadecyl phosphonate; HDPA and ODPA, respectively), which were better retained in the nanofiber after surface segregation. Subsequent uptake experiments to better understand specific solid-liquid interfacial interactions were carried out using 5 mg of HDPA-functionalized PAN mats with 10 µM U at pH 6.8 in four systems with different combinations of solutions containing 5 mM calcium (Ca2+) and 5 mM bicarbonate ( HCO 3 - ). U uptake was similar in control solutions containing no Ca2+ and HCO 3 - (resulting in 19 ± 3% U uptake), and in those containing only 5 mM Ca2+ (resulting in 20 ± 3% U uptake). A decrease in U uptake (10 ± 4% U uptake) was observed in experiments with HCO 3 - , indicating that UO2-CO3 complexes may increase uranium solubility. Results from shell-by-shell EXAFS fitting, aqueous extractions, and surface-enhanced Raman scattering (SERS) indicate that U is bound to phosphonate as a monodentate inner sphere surface complex to one of the hydroxyls in the phosphonate functional groups. New knowledge derived from this study on material fabrication and solid-liquid interfacial interactions will help to advance technologies for use in the in-situ detection and treatment of U in water.

8.
Environ Sci Technol ; 55(23): 16246-16256, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34797046

RESUMEN

We investigated interfacial reactions of U(VI) in the presence of Suwannee River natural organic matter (NOM) at acidic and neutral pH. Laboratory batch experiments show that the adsorption and precipitation of U(VI) in the presence of NOM occur at pH 2 and pH 4, while the aqueous complexation of U by dissolved organic matter is favored at pH 7, preventing its precipitation. Spectroscopic analyses indicate that U(VI) is mainly adsorbed to the particulate organic matter at pH 4. However, U(VI)-bearing ultrafine to nanocrystalline solids were identified at pH 4 by electron microscopy. This study shows the promotion of U(VI) precipitation by NOM at low pH which may be relevant to the formation of mineralized deposits, radioactive waste repositories, wetlands, and other U- and organic-rich environmental systems.


Asunto(s)
Residuos Radiactivos , Uranio , Adsorción , Materia Orgánica Disuelta , Concentración de Iones de Hidrógeno , Uranio/análisis
9.
Adv Mater ; 33(30): e2007885, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34110653

RESUMEN

The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mgPt -1 @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.

10.
Environ Sci Process Impacts ; 23(1): 73-85, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33325952

RESUMEN

We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6-58.9 mg kg-1), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 µM U. The U concentration in the solution decreased 36-59% after 24 h, and 49-65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U-P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix, followed by U-P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.


Asunto(s)
Nanopartículas , Tamaricaceae , Uranio , New Mexico , Fósforo , Raíces de Plantas/química , Uranio/análisis
11.
Sci Total Environ ; 750: 141485, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32862002

RESUMEN

The availability of heavy metals in terrestrial environments is largely controlled by their interactions with minerals and organic matter, with iron minerals having a particularly strong role in heavy metal fate. Because soil organic matter contains a variety of compounds that differ in their chemical properties, the underlying impact organic matter-soil mineral associations bestow on heavy metal binding is still unresolved. Here, we systematically examine the binding of Cd, Zn and Ni by a suite of organic-ferrihydrite assemblages, chosen to account for various compound chemistries within soil organic matter. We posited that organic compound functionality would dictate the extent of association with the organic-ferrihydrite assemblages. Increased heavy metal binding to the assemblages was observed and attributed to the introduction of additional binding sites by the organic functional groups with differing metal affinities. The relative increase depended on the metal's Lewis acidity and followed the order Cd > Zn > Ni, whereas the reverse order was obtained for metal binding by pristine ferrihydrite (Ni > Zn > Cd). Citric acid-, aspartic acid- and cysteine-ferrihydrite assemblages also enhanced the metal binding rate. X-ray absorption spectroscopy revealed that the organic coating contributed significantly to Zn binding by the assemblages, despite relatively low organic surface coverage. Our findings provide valuable information on the nature of heavy metal-organic-mineral interactions and metal adsorption processes regulating their bioavailability and transport.

12.
J Am Chem Soc ; 142(51): 21243-21248, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33315385

RESUMEN

Electrically conductive metal-organic frameworks (cMOFs) have become a topic of intense interest in recent years because of their great potential in electrochemical energy storage, electrocatalysis, and sensing applications. Most of the cMOFs reported hitherto are 2D structures, and 3D cMOFs remain rare. Herein we report FeTHQ, a 3D cMOF synthesized from tetrahydroxy-1,4-quinone (THQ) and iron(II) sulfate salt. FeTHQ exhibited a conductivity of 3.3 ± 0.55 mS cm-1 at 300 K, which is high for 3D cMOFs. The conductivity of FeTHQ is valence-dependent. A higher conductivity was measured with the as-prepared FeTHQ than with the air-oxidized and sodium naphthalenide-reduced samples.


Asunto(s)
Conductividad Eléctrica , Estructuras Metalorgánicas/química , Quinonas/química , Electroquímica , Hierro/química , Modelos Moleculares , Oxidación-Reducción
13.
Environ Sci Technol ; 54(15): 9445-9453, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32633952

RESUMEN

Natural organic matter (NOM) is known to affect the microbial reduction and transformation of ferrihydrite, but its implication toward cadmium (Cd) associated with ferrihydrite is not well-known. Here, we investigated how Cd is redistributed when ferrihydrite undergoes microbial reduction in the presence of NOM. Incubation with Geobacter sulfurreducens showed that both the rate and the extent of reduction of Cd-loaded ferrihydrite were enhanced by increasing concentrations of NOM (i.e., C/Fe ratio). Without NOM, only 3-4% of Fe(III) was reduced, but around 61% of preadsorbed Cd was released into solution due to ferrihydrite transformation to lepidocrocite. At high C/Fe ratio (1.6), more than 35% of Fe(III) was reduced, as NOM can facilitate bioreduction by working as an electron shuttle and decreased aggregate size, but only a negligible amount of Cd was released into solution, thus decreasing Cd toxicity and prolonging microbial Fe(III) reduction. No ferrihydrite transformation was observed at high C/Fe ratios using Mössbauer spectroscopy and X-ray diffraction, and X-ray absorption spectroscopy indicated the proportion of Cd-OM bond increased after microbial reduction. This study shows that the presence of NOM leads to less mobilization of Cd under reducing condition possibly by inhibiting ferrihydrite transformation and recapturing Cd through Cd-OM bond.


Asunto(s)
Cadmio , Compuestos Férricos , Geobacter , Hierro , Minerales , Oxidación-Reducción
14.
Environ Sci Technol ; 54(11): 6682-6692, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32347724

RESUMEN

Reduced sulfur (S) has a contrasting role in the fate of arsenic (As) in peatlands. Sulfur bridges provide efficient binding of As to organic carbon (C), but the formation of aqueous As-S species, so-called thioarsenates, leads to a low to no sorption tendency to organic C functional groups. Here, we studied how pH changes the role of reduced S in desorption and retention of presorbed As in model peat. Control desorption experiments without S addition revealed that As was mobilized, predominantly as arsenite, in all treatments with relative mobilization increasing with pH (4.5 < 7.0 < 8.5). Addition of sulfide or polysulfide caused substantial As retention at acidic conditions but significantly enhanced As desorption compared to controls at neutral to alkaline pH. Thioarsenates dominated As speciation at pH 7.0 and 8.5 (maximum, 79%) and remained in solution without (re)sorption to peat. Predominance of arsenite in control experiments and no evidence of surface-bound thioarsenates at pH 7.0 suggest mobilization to proceed via arsenite desorption, reaction with dissolved or surface-bound reduced S, and formation of thioarsenates. Our results suggest that natural or management-related increases in pH or increases in reduced S in near-neutral pH environments can turn organic matter from an As sink into a source.


Asunto(s)
Arsénico , Arseniatos , Concentración de Iones de Hidrógeno , Suelo , Azufre
15.
Environ Sci Technol ; 54(7): 3979-3987, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32176846

RESUMEN

Natural or anthropogenic processes can increase the concentration of uranium (U) and arsenic (As) above the maximum contaminant levels in water sources. Bicarbonate and calcium (Ca) can have major impacts on U speciation and can affect the reactivity between U and As. We therefore investigated the reactivity of aqueous U and As mixtures with bicarbonate and Ca for acidic and neutral pH conditions. In experiments performed with 1 mM U and As mixtures, 10 mM Ca, and without added bicarbonate (pCO2 = 3.5), aqueous U decreased to <0.25 mM at pH 3 and 7. Aqueous As decreased the most at pH 3 (∼0.125 mM). Experiments initiated with 0.005 mM As and U showed similar trends. X-ray spectroscopy (i.e., XAS and EDX) and diffraction indicated that U-As-Ca- and U-Ca-bearing solids resemble uranospinite [Ca(UO2)2(AsO4)2·10H2O] and becquerelite [Ca(UO2)6O4(OH)6·8(H2O)]. These findings suggest that U-As-Ca-bearing solids formed in mixed solutions are stable at pH 3. However, the dissolution of U-As-Ca and U-Ca-bearing solids at pH 7 was observed in reactors containing 10 mM bicarbonate and Ca, suggesting a kinetic reaction of aqueous uranyl-calcium-carbonate complexation. Our study provides new insights regarding U and As mobilization for risk assessment and remediation strategies.


Asunto(s)
Arsénico , Uranio , Bicarbonatos , Calcio , Concentración de Iones de Hidrógeno
16.
Environ Sci Technol ; 54(6): 3237-3244, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32069033

RESUMEN

Groundwater contamination by As from natural and anthropogenic sources is a worldwide concern. Redox heterogeneities over space and time are common and can influence the molecular-level speciation of As, and thus, As release/retention but are largely unexplored. Here, we present results from a dual-domain column experiment, with natural organic-rich, fine-grained, and sulfidic sediments embedded as lenses (referred to as "reducing lenses") within natural aquifer sand. We show that redox interfaces in sulfur-rich, alkaline aquifers may release concerning levels of As, even when sediment As concentration is low (<2 mg/kg), due to the formation of mobile thioarsenates at aqueous sulfide/Fe molar ratios <1. In our experiments, this behavior occurred in the aquifer sand between reducing lenses and was attributed to the spreading of sulfidic conditions and subsequent Fe reductive dissolution. In contrast, inside reducing lenses (and some locations in the aquifer) the aqueous sulfide/Fe molar ratios exceeded 1 and aqueous sulfide/As molar ratios exceeded 100, which partitioned As(III)-S to the solid phase (associated with organics or as realgar (As4S4)). These results highlight the importance of thioarsenates in natural sediments and indicate that redox interfaces and sediment heterogeneities could locally degrade groundwater quality, even in aquifers with unconcerning solid-phase As concentrations.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Sedimentos Geológicos , Oxidación-Reducción
17.
Chem Geol ; 524: 345-355, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31406388

RESUMEN

We investigated the effect of bicarbonate and oxidizing agents on uranium (U) reactivity and subsequent dissolution of U(IV) and U(VI) mineral phases in the mineralized deposits from Jackpile mine, Laguna Pueblo, New Mexico, by integrating laboratory experiments with spectroscopy, microscopy and diffraction techniques. Uranium concentration in solid samples from mineralized deposit obtained for this study exceeded 7000 mg kg-1, as determined by X-ray fluorescence (XRF). Results from X-ray photoelectron spectroscopy (XPS) suggest the coexistence of U(VI) and U(IV) at a ratio of 19:1 at the near surface region of unreacted solid samples. Analyses made using X-ray diffraction (XRD) and electron microprobe detected the presence of coffinite (USiO4) and uranium-phosphorous-potassium (U-P-K) mineral phases. Imaging, mapping and spectroscopy results from scanning transmission electron microscopy (STEM) indicate that the U-P-K phases were encapsulated by carbon. Despite exposing the solid samples to strong oxidizing conditions, the highest aqueous U concentrations were measured from samples reacted with 100% air saturated 10 mM NaHCO3 solution, at pH 7.5. Analyses using X-ray absorption spectroscopy (XAS) indicate that all the U(IV) in these solid samples were oxidized to U(VI) after reaction with dissolved oxygen and hypochlorite (OCl-) in the presence of bicarbonate (HCO3 -). The reaction between these organic rich deposits, and 100% air saturated bicarbonate solution (containing dissolved oxygen), can result in considerable mobilization of U in water, which has relevance to the U concentrations observed at the Rio Paguate across the Jackpile mine. Results from this investigation provide insights on the reactivity of carbon encapsulated U-phases under mild and strong oxidizing conditions that have important implication in U recovery, remediation and risk exposure assessment of sites.

18.
Chem Geol ; 522: 26-37, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371834

RESUMEN

The reactivity of co-occurring arsenic (As) and uranium (U) in mine wastes was investigated using batch reactors, microscopy, spectroscopy, and aqueous chemistry. Analyses of field samples collected in proximity to mine wastes in northeastern Arizona confirm the presence of As and U in soils and surrounding waters, as reported in a previous study from our research group. In this study, we measured As (< 0.500 to 7.77 µg/L) and U (0.950 to 165 µg/L) in waters, as well as mine wastes (< 20.0 to 40.0 mg/kg As and < 60.0 to 110 mg/kg U) and background solids (< 20.0 mg/kg As and < 60.0 mg/kg U). Analysis with X-ray fluorescence (XRF) and electron microprobe show the co-occurrence of As and U with iron (Fe) and vanadium (V). These field conditions served as a foundation for additional laboratory experiments to assess the reactivity of metals in these mine wastes. Results from laboratory experiments indicate that labile and exchangeable As(V) was released to solution when solids were sequentially reacted with water and magnesium chloride (MgCl2), while limited U was released to solution with the same reactants. The predominance of As(V) in mine waste solids was confirmed by X-ray absorption near edge (XANES) analysis. Both As and U were released to solution after reaction of solids in batch experiments with HCO3 -. Both X-ray photoelectron spectroscopy (XPS) and XANES analysis determined the predominance of Fe(III) in the solids. Mössbauer spectroscopy detected the presence of nano-crystalline goethite, Fe(II) and Fe(III) in (phyllo)silicates, and an unidentified mineral with parameters consistent with arsenopyrite or jarosite in the mine waste solids. Our results suggest that As and U can be released under environmentally relevant conditions in mine waste, which is applicable to risk and exposure assessment.

19.
Environ Sci Technol ; 53(9): 5005-5015, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30973221

RESUMEN

Peatlands and other wetlands with abundant natural organic matter (NOM) are important sinks for antimony (Sb). While formation of Sb(III) sulfide phases or Sb(III) binding to NOM are discussed to decrease Sb mobility, the exact binding mechanisms remain elusive. Here, we reacted increasing sulfide concentrations with purified model peat at pH 6, forming reduced organic sulfur species, and subsequently equilibrated the reaction products with 50 µM of antimonite under anoxic conditions. Sulfur solid-phase speciation and the local binding environment of Sb were analyzed using X-ray absorption spectroscopy. We found that 85% of antimonite was sorbed by untreated peat. Sulfide-reacted peat increased sorption to 98%. Shell-by-shell fitting of Sb K-edge X-ray absorption fine structure spectra revealed Sb in untreated peat bound to carboxyl or phenol groups with average Sb-carbon distances of ∼2.90 Å. With increasing content of reduced organic sulfur, Sb was progressively coordinated to S atoms at distances of ∼2.45 Å and Sb-carbon distances of ∼3.33 Å, suggesting increasing Sb-thiol binding. Iterative target factor analysis allowed exclusion of reduced inorganic Sb-sulfur phases with similar Sb-sulfur distances. In conclusion, even when free sulfide concentrations are too low for formation of Sb-sulfur precipitates, peat NOM can sequester Sb in anoxic, sulfur-enriched environments.


Asunto(s)
Antimonio , Suelo , Fenol , Fenoles , Compuestos de Sulfhidrilo
20.
Environ Sci Technol ; 53(10): 5758-5767, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30998849

RESUMEN

We investigated the functional group chemistry of natural organic matter (NOM) associated with both U(IV) and U(VI) in solids from mineralized deposits exposed to oxidizing conditions from the Jackpile Mine, Laguna Pueblo, NM. The uranium (U) content in unreacted samples was 0.44-2.6% by weight determined by X-ray fluorescence. In spite of prolonged exposure to ambient oxidizing conditions, ≈49% of U(IV) and ≈51% of U(VI) were identified on U LIII edge extended X-ray absorption fine structure spectra. Loss on ignition and thermogravimetric analyses identified from 13% to 44% of NOM in the samples. Carbonyl, phenolic, and carboxylic functional groups in the unreacted samples were identified by fitting of high-resolution X-ray photoelectron spectroscopy (XPS) C 1s and O 1s spectra. Peaks corresponding to phenolic and carbonyl functional groups had intensities higher than those corresponding to carboxylic groups in samples from the supernatant from batch extractions conducted at pH 13, 7, and 2. U(IV) and U(VI) species were detected in the supernatant after batch extractions conducted under oxidizing conditions by fitting of high-resolution XPS U 4f spectra. The outcomes from this study highlight the importance of the influence of pH on the organic functional group chemistry and U speciation in mineralized deposits.


Asunto(s)
Uranio , New Mexico , Oxidación-Reducción , Espectroscopía de Fotoelectrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA