Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Cell Biol ; 26(1): 113-123, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38195707

RESUMEN

Brown adipose tissue (BAT) is a central thermogenic organ that enhances energy expenditure and cardiometabolic health. However, regulators that specifically increase the number of thermogenic adipocytes are still an unmet need. Here, we show that the cAMP-binding protein EPAC1 is a central regulator of adaptive BAT growth. In vivo, selective pharmacological activation of EPAC1 increases BAT mass and browning of white fat, leading to higher energy expenditure and reduced diet-induced obesity. Mechanistically, EPAC1 coordinates a network of regulators for proliferation specifically in thermogenic adipocytes, but not in white adipocytes. We pinpoint the effects of EPAC1 to PDGFRα-positive preadipocytes, and the loss of EPAC1 in these cells impedes BAT growth and worsens diet-induced obesity. Importantly, EPAC1 activation enhances the proliferation and differentiation of human brown adipocytes and human brown fat organoids. Notably, a coding variant of RAPGEF3 (encoding EPAC1) that is positively correlated with body mass index abolishes noradrenaline-induced proliferation of brown adipocytes. Thus, EPAC1 might be an attractive target to enhance thermogenic adipocyte number and energy expenditure to combat metabolic diseases.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo , Humanos , Adipocitos Marrones/metabolismo , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular , Metabolismo Energético , Obesidad/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 15(2): 536-551, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221511

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS: Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS: Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 µm for DMD vs. 2.26 ± 0.08 µm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS: We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Humanos , Ratones , Animales , Perros , Cardiomiopatía Dilatada/etiología , Distrofina/genética , Distrofina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Ratones Endogámicos mdx , Calcio/metabolismo , Proteómica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fibrosis
3.
Circ Res ; 134(1): 100-113, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38084599

RESUMEN

BACKGROUND: Cardiac hypertrophy is an intermediate stage in the development of heart failure. The structural and functional processes occurring in cardiac hypertrophy include extensive gene reprogramming, which is dependent on epigenetic regulation and chromatin remodeling. However, the chromatin remodelers and their regulatory functions involved in the pathogenesis of cardiac hypertrophy are not well characterized. METHODS: Protein interaction was determined by immunoprecipitation assay in primary cardiomyocytes and mouse cardiac samples subjected or not to transverse aortic constriction for 1 week. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) experiments were performed on the chromatin of adult mouse cardiomyocytes. RESULTS: We report that the calcium-activated protein phosphatase CaN (calcineurin), its endogenous inhibitory protein carabin, the STK24 (STE20-like protein kinase 3), and the histone monomethyltransferase, MLL3 (mixed lineage leukemia 3) form altogether a macromolecular complex at the chromatin of cardiomyocytes. Under basal conditions, carabin prevents CaN activation while the serine/threonine kinase STK24 maintains MLL3 inactive via phosphorylation. After 1 week of transverse aortic constriction, both carabin and STK24 are released from the CaN-MLL3 complex leading to the activation of CaN, dephosphorylation of MLL3, and in turn, histone H3 lysine 4 monomethylation. Selective cardiac MLL3 knockdown mitigates hypertrophy, and chromatin immunoprecipitation and DNA sequencing analysis demonstrates that MLL3 is de novo recruited at the transcriptional start site of genes implicated in cardiomyopathy in stress conditions. We also show that CaN and MLL3 colocalize at chromatin and that CaN activates MLL3 histone methyl transferase activity at distal intergenic regions under hypertrophic conditions. CONCLUSIONS: Our study reveals an unsuspected epigenetic mechanism of CaN that directly regulates MLL3 histone methyl transferase activity to promote cardiac remodeling.


Asunto(s)
Calcineurina , Histonas , Animales , Ratones , Calcineurina/metabolismo , Cardiomegalia/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Histonas/metabolismo , Miocitos Cardíacos/metabolismo , Transferasas/genética , Transferasas/metabolismo , Remodelación Ventricular
4.
Cardiovasc Res ; 119(14): 2390-2404, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967390

RESUMEN

While chronic heart failure (CHF) treatment has considerably improved patient prognosis and survival, the therapeutic management of acute heart failure (AHF) has remained virtually unchanged in the last decades. This is partly due to the scarcity of pre-clinical models for the pathophysiological assessment and, consequently, the limited knowledge of molecular mechanisms involved in the different AHF phenotypes. This scientific statement outlines the different trajectories from acute to CHF originating from the interaction between aetiology, genetic and environmental factors, and comorbidities. Furthermore, we discuss the potential molecular targets capable of unveiling new therapeutic perspectives to improve the outcome of the acute phase and counteracting the evolution towards CHF.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Enfermedad Aguda , Pronóstico , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Enfermedad Crónica , Factores de Riesgo
5.
Circ Res ; 133(11): 924-926, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943945
6.
Theranostics ; 13(15): 5435-5451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908733

RESUMEN

Doxorubicin (Dox) is an effective anticancer molecule, but its clinical efficacy is limited by strong cardiotoxic side effects. Lysosomal dysfunction has recently been proposed as a new mechanism of Dox-induced cardiomyopathy. However, to date, there is a paucity of therapeutic approaches capable of restoring lysosomal acidification and function in the heart. Methods: We designed novel poly(lactic-co-glycolic acid) (PLGA)-grafted silica nanoparticles (NPs) and investigated their therapeutic potential in the primary prevention of Dox cardiotoxicity in cardiomyocytes and mice. Results: We showed that NPs-PLGA internalized rapidly in cardiomyocytes and accumulated inside the lysosomes. Mechanistically, NPs-PLGA restored lysosomal acidification in the presence of doxorubicin or bafilomycin A1, thereby improving lysosomal function and autophagic flux. Importantly, NPs-PLGA mitigated Dox-related mitochondrial dysfunction and oxidative stress, two main mechanisms of cardiotoxicity. In vivo, inhalation of NPs-PLGA led to effective and rapid targeting of the myocardium, which prevented Dox-induced adverse remodeling and cardiac dysfunction in mice. Conclusion: Our findings demonstrate a pivotal role for lysosomal dysfunction in Dox-induced cardiomyopathy and highlight for the first time that pulmonary-driven NPs-PLGA administration is a promising strategy against anthracycline cardiotoxicity.


Asunto(s)
Cardiomiopatías , Nanopartículas , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Miocitos Cardíacos/metabolismo , Cardiomiopatías/metabolismo , Estrés Oxidativo , Lisosomas/metabolismo
7.
Front Physiol ; 14: 1120336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909224

RESUMEN

Introduction: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with increased mortality and morbidity. The Exchange Protein directly Activated by cAMP (EPAC), has been implicated in pro-arrhythmic signaling pathways in the atria, but the underlying mechanisms remain unknown. Methods: In this study, we investigated the involvement of EPAC1 and EPAC2 isoforms in the genesis of AF in wild type (WT) mice and knockout (KO) mice for EPAC1 or EPAC2. We also employed EPAC pharmacological modulators to selectively activate EPAC proteins (8-CPT-AM; 10 µM), or inhibit either EPAC1 (AM-001; 20 µM) or EPAC2 (ESI-05; 25 µM). Transesophageal stimulation was used to characterize the induction of AF in vivo in mice. Optical mapping experiments were performed on isolated mouse atria and cellular electrophysiology was examined by whole-cell patch-clamp technique. Results: In wild type mice, we found 8-CPT-AM slightly increased AF susceptibility and that this was blocked by the EPAC1 inhibitor AM-001 but not the EPAC2 inhibitor ESI-05. Consistent with this, in EPAC1 KO mice, occurrence of AF was observed in 3/12 (vs. 4/10 WT littermates) and 4/10 in EPAC2 KO (vs. 5/10 WT littermates). In wild type animals, optical mapping experiments revealed that 8-CPT-AM perfusion increased action potential duration even in the presence of AM-001 or ESI-05. Interestingly, 8-CPT-AM perfusion decreased conduction velocity, an effect blunted by AM-001 but not ESI-05. Patch-clamp experiments demonstrated action potential prolongation after 8-CPT-AM perfusion in both wild type and EPAC1 KO mice and this effect was partially prevented by AM-001 in WT. Conclusion: Together, these results indicate that EPAC1 and EPAC2 signaling pathways differentially alter atrial electrophysiology but only the EPAC1 isoform is involved in the genesis of AF. Selective blockade of EPAC1 with AM-001 prevents AF in mice.

8.
Viruses ; 15(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36851533

RESUMEN

The exceptional impact of the COVID-19 pandemic has stimulated an intense search for antiviral molecules. Host-targeted antiviral molecules have the potential of presenting broad-spectrum antiviral activity and are also considered as less likely to select for resistant viruses. In this study, we investigated the antiviral activity exerted by AM-001, a specific pharmacological inhibitor of EPAC1, a host exchange protein directly activated by cyclic AMP (cAMP). The cAMP-sensitive protein, EPAC1 regulates various physiological and pathological processes but its role in SARS-CoV-2 and influenza A virus infection has not yet been studied. Here, we provide evidence that the EPAC1 specific inhibitor AM-001 exerts potent antiviral activity against SARS-CoV-2 in the human lung Calu-3 cell line and the African green monkey Vero cell line. We observed a concentration-dependent inhibition of SARS-CoV-2 infectious viral particles and viral RNA release in the supernatants of AM-001 treated cells that was not associated with a significant impact on cellular viability. Furthermore, we identified AM-001 as an inhibitor of influenza A virus in Calu-3 cells. Altogether these results identify EPAC1 inhibition as a promising therapeutic target against viral infections.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Antivirales/farmacología , Chlorocebus aethiops , Gripe Humana/tratamiento farmacológico , Pandemias , ARN Viral , SARS-CoV-2 , Replicación Viral
9.
Cardiovasc Res ; 119(5): 1130-1145, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36082907

RESUMEN

Diabetic cardiomyopathy (CM), occurring in the absence of hypertension, coronary artery disease, and valvular or congenital heart disease, is now recognized as a distinct, multifactorial disease leading to ventricular hypertrophy and abnormal myocardial contractility that correlates with an array of complex molecular and cellular changes. Animal models provide the unique opportunity to investigate mechanistic aspects of diabetic CM, but important caveats exist when extrapolating findings obtained from preclinical models of diabetes to humans. Indeed, animal models do not recapitulate the complexity of environmental factors, most notably the duration of the exposure to insulin resistance that may play a crucial role in the development of diabetic CM. Moreover, most preclinical studies are performed in animals with uncontrolled or poorly controlled diabetes, whereas patients tend to undergo therapeutic intervention. Finally, whilst type 2 diabetes mellitus prevalence trajectory mainly increases at 40- < 75 years (with a currently alarming increase at younger ages, however), it is a legitimate concern how closely rodent models employing young animals recapitulate the disease developing in old people. The aim of this review is to identify the current limitations of rodent models and to discuss how future mechanistic and preclinical studies should integrate key confounding factors to better mimic the diabetic CM phenotype.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Animales , Humanos , Cardiomiopatías Diabéticas/etiología , Diabetes Mellitus Tipo 2/epidemiología , Miocardio
10.
Front Cardiovasc Med ; 9: 809143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211526

RESUMEN

BACKGROUND: Mechanical circulatory supports are used in case of cardiogenic shock (CS) refractory to conventional therapy. Several devices can be employed, but are limited by their availability, benefit risk-ratio, and/or cost. AIMS: To investigate the feasibility, safety, and effectiveness of a long-term support by a new available device (IVAC2L) in pigs. METHODS: Experiments were carried out in male pigs, divided into healthy (n = 6) or ischemic CS (n = 4) groups for a median support time of 34 and 12 h, respectively. IVAC2L was implanted under fluoroscopic and TTE guidance under general anesthesia. CS was induced by surgical ligation of the left anterior descending artery. An ipsilateral lower limb reperfusion was created with the Solopath® system. Reperfusion was started after 1 h of support in healthy pigs and upon IVAC2L insertion in CS pigs. Hemodynamic and biological parameters were monitored before and during the whole period of support in each group. RESULTS: Occurrence of an ipsilateral lower limb ischemia was systematic in healthy and CS pigs in a few minutes after IVAC2L implantation, and could be reversed by the arterial reperfusion, as demonstrated by distal transcutaneous pressure in oxygen (TcPO2) and lactate normalization. IVAC2L support decreased pulmonary capillary wedge pressure (PCWP) (15.3 ± 0.3 vs. 7.5 ± 0.9 mmHg, p < 0.001), increased systolic blood pressure (SBP) (70 ± 4.5 vs. 101.3 ± 3.1 mmHg, p < 0.01), and cardiac output (CO) (4.0 ± 0.3 vs. 5.2 ± 0.6 l/min, p < 0.05) in CS pigs; at CS onset and after 12 h of support, without effects on heart rate or pulmonary artery pressure (PAP). Non-sustained ventricular arrhythmias were frequent at implantation (50%). A non-significant hemolysis was observed under support in CS pigs. Bleedings were frequent at the insertion and/or operating sites (30%). CONCLUSION: Long-term support by IVAC2L is feasible and associated with a significant hemodynamic improvement in a porcine model. These preclinical data open the door for a study of IVAC2L in human ischemic CS, keeping in mind the need for systematic reperfusion of the lower limb and the associated risk of bleeding.

11.
Antioxidants (Basel) ; 11(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35204198

RESUMEN

Exchange proteins directly activated by cAMP (Epac) proteins are implicated in a wide range of cellular functions including oxidative stress and cell survival. Mitochondrial-dependent oxidative stress has been associated with progressive neuronal death underlying the pathology of many neurodegenerative diseases. The role of Epac modulation in neuronal cells in relation to cell survival and death, as well as its potential effect on mitochondrial function, is not well established. In immortalized hippocampal (HT-22) neuronal cells, we examined mitochondria function in the presence of various Epac pharmacological modulators in response to oxidative stress due to ferroptosis. Our study revealed that selective pharmacological modulation of Epac1 or Epac2 isoforms, exerted differential effects in erastin-induced ferroptosis conditions in HT-22 cells. Epac1 inhibition prevented cell death and loss of mitochondrial integrity induced by ferroptosis, while Epac2 inhibition had limited effects. Our data suggest Epac1 as a plausible therapeutic target for preventing ferroptosis cell death associated with neurodegenerative diseases.

12.
Cell Death Dis ; 12(9): 824, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471096

RESUMEN

Cyclic adenosine monophosphate (cAMP) is a master regulator of mitochondrial metabolism but its precise mechanism of action yet remains unclear. Here, we found that a dietary saturated fatty acid (FA), palmitate increased intracellular cAMP synthesis through the palmitoylation of soluble adenylyl cyclase in cardiomyocytes. cAMP further induced exchange protein directly activated by cyclic AMP 1 (Epac1) activation, which was upregulated in the myocardium of obese patients. Epac1 enhanced the activity of a key enzyme regulating mitochondrial FA uptake, carnitine palmitoyltransferase 1. Consistently, pharmacological or genetic Epac1 inhibition prevented lipid overload, increased FA oxidation (FAO), and protected against mitochondrial dysfunction in cardiomyocytes. In addition, analysis of Epac1 phosphoproteome led us to identify two key mitochondrial enzymes of the the ß-oxidation cycle as targets of Epac1, the long-chain FA acyl-CoA dehydrogenase (ACADL) and the 3-ketoacyl-CoA thiolase (3-KAT). Epac1 formed molecular complexes with the Ca2+/calmodulin-dependent protein kinase II (CaMKII), which phosphorylated ACADL and 3-KAT at specific amino acid residues to decrease lipid oxidation. The Epac1-CaMKII axis also interacted with the α subunit of ATP synthase, thereby further impairing mitochondrial energetics. Altogether, these findings indicate that Epac1 disrupts the balance between mitochondrial FA uptake and oxidation leading to lipid accumulation and mitochondrial dysfunction, and ultimately cardiomyocyte death.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ácido Palmítico/toxicidad , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Catecolaminas/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Humanos , L-Lactato Deshidrogenasa/metabolismo , Lipoilación/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Fosfoproteínas/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Solubilidad , Estrés Fisiológico/efectos de los fármacos
13.
Biomed Pharmacother ; 143: 112072, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34464747

RESUMEN

BACKGROUND AND PURPOSE: It has been shown that the antidiabetic drug metformin protects hepatocytes against toxicity by various stressors. Chronic or excessive consumption of diclofenac (DF) - a pain-relieving drug, leads to drug-induced liver injury via a mechanism involving mitochondrial damage and ultimately apoptotic death of hepatocytes. However, whether metformin protects against DF-induced toxicity is unknown. Recently, it was also shown that cAMP elevation is protective against DF-induced apoptotic death in hepatocytes, a protective effect primarily involving the downstream cAMP effector EPAC and preservation of mitochondrial function. This study therefore aimed at investigating whether metformin protects against DF-induced toxicity via cAMP-EPACs. EXPERIMENTAL APPROACH: Primary rat hepatocytes were exposed to 400 µmol/L DF. CE3F4 or ESI-O5 were used as EPAC-1 or 2 inhibitors respectively. Apoptosis was measured by caspase-3 activity and necrosis by Sytox green staining. Seahorse X96 assay was used to determine mitochondrial function. Mitochondrial reactive oxygen species (ROS) production was measured using MitoSox, mitochondrial MnSOD expression was determined by immunostaining and mitochondrial morphology (fusion and fission ratio) by 3D refractive index imaging. KEY RESULTS: Metformin (1 mmol/L) was protective against DF-induced apoptosis in hepatocytes. This protective effect was EPAC-dependent (mainly EPAC-2). Metformin restored mitochondrial morphology in an EPAC-independent manner. DF-induced mitochondrial dysfunction which was demonstrated by decreased oxygen consumption rate, an increased ROS production and a reduced MnSOD level, were all reversed by metformin in an EPAC-dependent manner. CONCLUSION AND IMPLICATIONS: Metformin protects hepatocytes against DF-induced toxicity via cAMP-dependent EPAC-2.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Inhibidores de la Ciclooxigenasa/toxicidad , Diclofenaco/toxicidad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hepatocitos/efectos de los fármacos , Metformina/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , AMP Cíclico/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Masculino , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Estrés Oxidativo/efectos de los fármacos , Cultivo Primario de Células , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
14.
Mol Pharmacol ; 99(4): 294-307, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33574047

RESUMEN

Chronic consumption of the nonsteroidal anti-inflammatory drug diclofenac may induce drug-induced liver injury (DILI). The mechanism of diclofenac-induced liver injury is partially elucidated and involves mitochondrial damage. Elevated cAMP protects hepatocytes against bile acid-induced injury. However, it is unknown whether cAMP protects against DILI and, if so, which downstream targets of cAMP are implicated in the protective mechanism, including the classic protein kinase A (PKA) pathway or alternative pathways like the exchange protein directly activated by cAMP (EPAC). The aim of this study was to investigate whether cAMP and/or its downstream targets protect against diclofenac-induced injury in hepatocytes. Rat hepatocytes were exposed to 400 µmol/l diclofenac. Apoptosis and necrosis were measured by caspase-3 activity assay and Sytox green staining, respectively. Mitochondrial membrane potential (MMP) was measured by JC-10 staining. mRNA and protein expression were assessed by quantitative polymerase chain reaction (qPCR) and Western blot, respectively. The cAMP-elevating agent 7ß-acetoxy-8,13-epoxy-1α,6ß,9α-trihydroxylabd-14-en-11-one (forskolin), the pan-phosphodiesterase inhibitor IBMX, and EPAC inhibitors 5,7-dibromo-6-fluoro-3,4-dihydro-2-methyl-1(2H)-quinoline carboxaldehyde (CE3F4) and ESI-O5 were used to assess the role of cAMP and its effectors, PKA or EPAC. Diclofenac exposure induced apoptotic cell death and loss of MMP in hepatocytes. Both forskolin and IBMX prevented diclofenac-induced apoptosis. EPAC inhibition but not PKA inhibition abolished the protective effect of forskolin and IBMX. Forskolin and IBMX preserved the MMP, whereas both EPAC inhibitors diminished this effect. Both EPAC1 and EPAC2 were expressed in hepatocytes and localized in mitochondria. cAMP elevation protects hepatocytes against diclofenac-induced cell death, a process primarily involving EPACs. The cAMP/EPAC pathway may be a novel target for treatment of DILI. SIGNIFICANCE STATEMENT: This study shows two main highlights. First, elevated cAMP levels protect against diclofenac-induced apoptosis in primary hepatocytes via maintenance of mitochondrial integrity. In addition, this study proposes the existence of mitochondrial cAMP-EPAC microdomains in rat hepatocytes, opening new avenues for targeted therapy in drug-induced liver injury (DILI). Both EPAC1 and EPAC2, but not protein kinase A, are responsible for this protective effect. Our findings present cAMP-EPAC as a potential target for the treatment of DILI and liver injury involving mitochondrial dysfunction.


Asunto(s)
AMP Cíclico/metabolismo , Diclofenaco/toxicidad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Animales , Antiinflamatorios no Esteroideos/toxicidad , Factores de Intercambio de Guanina Nucleótido/agonistas , Células HEK293 , Humanos , Masculino , Ratas , Ratas Wistar
15.
Cells ; 10(1)2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466800

RESUMEN

ß-adrenergic receptors (ß-ARs) play a major role in the physiological regulation of cardiac function through signaling routes tightly controlled by G protein-coupled receptor kinases (GRKs). Although the acute stimulation of ß-ARs and the subsequent production of cyclic AMP (cAMP) have beneficial effects on cardiac function, chronic stimulation of ß-ARs as observed under sympathetic overdrive promotes the development of pathological cardiac remodeling and heart failure (HF), a leading cause of mortality worldwide. This is accompanied by an alteration in cAMP compartmentalization and the activation of the exchange protein directly activated by cAMP 1 (Epac1) signaling. Among downstream signals of ß-ARs, compelling evidence indicates that GRK2, GRK5, and Epac1 represent attractive therapeutic targets for cardiac disease. Here, we summarize the pathophysiological roles of GRK2, GRK5, and Epac1 in the heart. We focus on their signalosome and describe how under pathological settings, these proteins can cross-talk and are part of scaffolded nodal signaling systems that contribute to a decreased cardiac function and HF development.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Remodelación Ventricular , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Factores de Intercambio de Guanina Nucleótido/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Miocardio/patología
16.
Cell Rep ; 32(8): 108075, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32846132

RESUMEN

Atrial natriuretic peptide (ANP) is a cardiac hormone controlling blood volume and pressure in mammals. It is still unclear whether ANP controls cold-induced thermogenesis in vivo. Here, we show that acute cold exposure induces cardiac ANP secretion in mice and humans. Genetic inactivation of ANP promotes cold intolerance and suppresses half of cold-induced brown adipose tissue (BAT) activation in mice. While white adipocytes are resistant to ANP-mediated lipolysis at thermoneutral temperature in mice, cold exposure renders white adipocytes fully responsive to ANP to activate lipolysis and a thermogenic program, a physiological response that is dramatically suppressed in ANP null mice. ANP deficiency also blunts liver triglycerides and glycogen metabolism, thus impairing fuel availability for BAT thermogenesis. ANP directly increases mitochondrial uncoupling and thermogenic gene expression in human white and brown adipocytes. Together, these results indicate that ANP is a major physiological trigger of BAT thermogenesis upon cold exposure in mammals.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Termogénesis/fisiología , Animales , Humanos , Masculino , Ratones , Ratones Noqueados
17.
Cells ; 9(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854274

RESUMEN

The compartmentation of signaling processes is accomplished by the assembly of protein complexes called signalosomes. These signaling platforms colocalize enzymes, substrates, and anchoring proteins into specific subcellular compartments. Exchange protein directly activated by cAMP 1 (EPAC1) is an effector of the second messenger, 3',5'-cyclic adenosine monophosphate (cAMP) that is associated with multiple roles in several pathologies including cardiac diseases. Both EPAC1 intracellular localization and molecular partners are key players in the regulation of cell fate, which may have important therapeutic potential. In this review, we summarize the recent findings on EPAC1 structure, regulation, and pharmacology. We describe the importance of EPAC1 subcellular distribution in its biological action, paying special attention to its nuclear localization and mechanism of action leading to cardiomyocyte hypertrophy. In addition, we discuss the role of mitochondrial EPAC1 in the regulation of cell death. Depending on the cell type and stress condition, we present evidence that supports either a protective or detrimental role of EPAC1 activation.


Asunto(s)
Muerte Celular/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Diferenciación Celular , Humanos , Transducción de Señal
18.
J Comput Aided Mol Des ; 34(11): 1171-1179, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32700175

RESUMEN

The exchange proteins activated by cAMP (EPAC) are implicated in a large variety of physiological processes and they are considered as promising targets for a wide range of therapeutic applications. Several recent reports provided evidence for the therapeutic effectiveness of the inhibiting EPAC1 activity cardiac diseases. In that context, we recently characterized a selective EPAC1 antagonist named AM-001. This compound was featured by a non-competitive mechanism of action but the localization of its allosteric site to EPAC1 structure has yet to be investigated. Therefore, we performed cosolvent molecular dynamics with the aim to identify a suitable allosteric binding site. Then, the docking and molecular dynamics were used to determine the binding of the AM-001 to the regions highlighted by cosolvent molecular dynamics for EPAC1. These analyses led us to the identification of a suitable allosteric AM-001 binding pocket at EPAC1. As a model validation, we also evaluated the binding poses of the available AM-001 analogues, with a different biological potency. Finally, the complex EPAC1 with AM-001 bound at the putative allosteric site was further refined by molecular dynamics. The principal component analysis led us to identify the protein motion that resulted in an inactive like conformation upon the allosteric inhibitor binding.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/química , Solventes/química , Sitio Alostérico , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Relación Estructura-Actividad
19.
Circ Res ; 127(6): 747-760, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32539601

RESUMEN

RATIONALE: Metabolic syndrome (MetS) is a cluster of interrelated risk factors for cardiovascular diseases and atherosclerosis. Circulating levels of large extracellular vesicles (lEVs), submicrometer-sized vesicles released from plasma membrane, from MetS patients were shown to induce endothelial dysfunction, but their role in early stage of atherosclerosis and on vascular smooth muscle cells (SMC) remain to be fully elucidated. OBJECTIVE: To determine the mechanisms by which lEVs lead to the progression of atherosclerosis in the setting of MetS. METHODS AND RESULTS: Proteomic analysis revealed that the small GTPase, Rap1 was overexpressed in lEVs from MetS patients compared with those from non-MetS subjects. Rap1 was in GTP-associated active state in both types of lEVs, and Rap1-lEVs levels correlated with increased cardiovascular risks, including stenosis. MetS-lEVs, but not non-MetS-lEVs, increased Rap1-dependent endothelial cell permeability. MetS-lEVs significantly promoted migration and proliferation of human aortic SMC and increased expression of proinflammatory molecules and activation of ERK (extracellular signal-regulated kinase) 5/p38 pathways. Neutralization of Rap1 by specific antibody or pharmacological inhibition of Rap1 completely prevented the effects of lEVs from MetS patients. High-fat diet-fed ApoE-/- mice displayed an increased expression of Rap1 both in aortas and circulating lEVs. lEVs accumulated in plaque atherosclerotic lesions depending on the progression of atherosclerosis. lEVs from high-fat diet-fed ApoE-/- mice, but not those from mice fed with a standard diet, enhanced SMC proliferation. Human atherosclerotic lesions were enriched in lEVs expressing Rap1. CONCLUSIONS: These data demonstrate that Rap1 carried by MetS-lEVs participates in the enhanced SMC proliferation, migration, proinflammatory profile, and activation of ERK5/p38 pathways leading to vascular inflammation and remodeling, and atherosclerosis. These results highlight that Rap1 carried by MetS-lEVs may be a novel determinant of diagnostic value for cardiometabolic risk factors and suggest Rap1 as a promising therapeutic target against the development of atherosclerosis. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Proteínas de Unión al GTP rap1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Aterosclerosis/sangre , Aterosclerosis/patología , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Permeabilidad , Fosforilación , Pronóstico , Proteómica , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rap
20.
Vasc Biol ; 2(1): R17-R34, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32161845

RESUMEN

Pulmonary arterial hypertension (PAH) is a multifactorial cardiopulmonary disease characterized by an elevation of pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR), which can lead to right ventricular (RV) failure, multi-organ dysfunction, and ultimately to premature death. Despite the advances in molecular biology, the mechanisms underlying pulmonary hypertension (PH) remain unclear. Nowadays, there is no curative treatment for treating PH. Therefore, it is crucial to identify novel, specific therapeutic targets and to offer more effective treatments against the progression of PH. Increasing amounts of evidence suggest that epigenetic modification may play a critical role in the pathogenesis of PAH. In the presented paper, we provide an overview of the epigenetic mechanisms specifically, DNA methylation, histone acetylation, histone methylation, and ncRNAs. As the recent identification of new pharmacological drugs targeting these epigenetic mechanisms has opened new therapeutic avenues, we also discuss the importance of epigenetic-based therapies in the context of PH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...