Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 378(6625): eaba1624, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36520915

RESUMEN

Chimeric antigen receptor (CAR) T cells are ineffective against solid tumors with immunosuppressive microenvironments. To overcome suppression, we engineered circuits in which tumor-specific synNotch receptors locally induce production of the cytokine IL-2. These circuits potently enhance CAR T cell infiltration and clearance of immune-excluded tumors, without systemic toxicity. The most effective IL-2 induction circuit acts in an autocrine and T cell receptor (TCR)- or CAR-independent manner, bypassing suppression mechanisms including consumption of IL-2 or inhibition of TCR signaling. These engineered cells establish a foothold in the target tumors, with synthetic Notch-induced IL-2 production enabling initiation of CAR-mediated T cell expansion and cell killing. Thus, it is possible to reconstitute synthetic T cell circuits that activate the outputs ultimately required for an antitumor response, but in a manner that evades key points of tumor suppression.


Asunto(s)
Terapia de Inmunosupresión , Inmunoterapia Adoptiva , Interleucina-2 , Neoplasias , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Linfocitos T/trasplante , Microambiente Tumoral , Animales , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ingeniería Celular , Receptores Notch/metabolismo , Terapia de Inmunosupresión/métodos
2.
Nat Biomed Eng ; 6(1): 8-18, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34239117

RESUMEN

Most bacterial vaccines work for a subset of bacterial strains or require the modification of the antigen or isolation of the pathogen before vaccine development. Here we report injectable biomaterial vaccines that trigger potent humoral and T-cell responses to bacterial antigens by recruiting, reprogramming and releasing dendritic cells. The vaccines are assembled from regulatorily approved products and consist of a scaffold with absorbed granulocyte-macrophage colony-stimulating factor and CpG-rich oligonucleotides incorporating superparamagnetic microbeads coated with the broad-spectrum opsonin Fc-mannose-binding lectin for the magnetic capture of pathogen-associated molecular patterns from inactivated bacterial-cell-wall lysates. The vaccines protect mice against skin infection with methicillin-resistant Staphylococcus aureus, mice and pigs against septic shock from a lethal Escherichia coli challenge and, when loaded with pathogen-associated molecular patterns isolated from infected animals, uninfected animals against a challenge with different E. coli serotypes. The strong immunogenicity and low incidence of adverse events, a modular manufacturing process, and the use of components compatible with current good manufacturing practice could make this vaccine technology suitable for responding to bacterial pandemics and biothreats.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Choque Séptico , Vacunas , Animales , Materiales Biocompatibles , Escherichia coli , Ratones , Moléculas de Patrón Molecular Asociado a Patógenos , Porcinos
3.
Biomaterials ; 279: 121240, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34753036

RESUMEN

Recently, several injectable scaffold-based cancer vaccines have been developed that can recruit and activate host dendritic cells (DCs) and generate potent antitumor responses. However, the optimal timing of adjuvant delivery, particularly of the commonly used cytosine-phosphodiester-guanine-oligonucleotide (CpG-ODN), for scaffold-based cancer vaccines remains unknown. We hypothesized that optimally timed CpG-ODN delivery will lead to enhanced immune responses, and designed a cryogel vaccine system where CpG-ODN release can be triggered on-demand by ultrasound. CpG-ODN was first condensed with polyethylenimine and then adsorbed to cryogels. Little adsorbed CpG-ODN was released in vitro. Ultrasound stimulation triggered continuous CpG-ODN release, at an enhanced rate even after ultrasound was turned off, with minimal burst release. In vivo, ultrasound stimulation four days post-vaccination induced a significantly higher antigen-specific cytotoxic T-lymphocyte (CTL) response compared to control mice. Furthermore, ultrasound stimulation at this time point generated a significantly higher IgG2a/c antibody titer than all the groups except ultrasound stimulation eight days post-vaccination. This optimal timing of ultrasound-triggered release coincided with peak DC accumulation in the cryogels. By enabling temporal control of vaccine components through release on-demand, this system is a promising platform to study the optimal timing of delivery of immunomodulatory agents for cancer vaccination.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Adyuvantes Inmunológicos , Animales , Criogeles , Agentes Inmunomoduladores , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos , Linfocitos T Citotóxicos
4.
Sci Transl Med ; 13(591)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910979

RESUMEN

Treatment of solid cancers with chimeric antigen receptor (CAR) T cells is plagued by the lack of ideal target antigens that are both absolutely tumor specific and homogeneously expressed. We show that multi-antigen prime-and-kill recognition circuits provide flexibility and precision to overcome these challenges in the context of glioblastoma. A synNotch receptor that recognizes a specific priming antigen, such as the heterogeneous but tumor-specific glioblastoma neoantigen epidermal growth factor receptor splice variant III (EGFRvIII) or the central nervous system (CNS) tissue-specific antigen myelin oligodendrocyte glycoprotein (MOG), can be used to locally induce expression of a CAR. This enables thorough but controlled tumor cell killing by targeting antigens that are homogeneous but not absolutely tumor specific. Moreover, synNotch-regulated CAR expression averts tonic signaling and exhaustion, maintaining a higher fraction of the T cells in a naïve/stem cell memory state. In immunodeficient mice bearing intracerebral patient-derived xenografts (PDXs) with heterogeneous expression of EGFRvIII, a single intravenous infusion of EGFRvIII synNotch-CAR T cells demonstrated higher antitumor efficacy and T cell durability than conventional constitutively expressed CAR T cells, without off-tumor killing. T cells transduced with a synNotch-CAR circuit primed by the CNS-specific antigen MOG also exhibited precise and potent control of intracerebral PDX without evidence of priming outside of the brain. In summary, by using circuits that integrate recognition of multiple imperfect but complementary antigens, we improve the specificity, completeness, and persistence of T cells directed against glioblastoma, providing a general recognition strategy applicable to other solid tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Glioblastoma/terapia , Inmunoterapia Adoptiva , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Sci Adv ; 5(7): eaav6313, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31392268

RESUMEN

Ischemic diseases are a leading cause of mortality and can result in autoamputation of lower limbs. We explored the hypothesis that implantation of an antigen-releasing scaffold, in animals previously vaccinated with the same antigen, can concentrate TH2 T cells and enhance vascularization of ischemic tissue. This approach may be clinically relevant, as all persons receiving childhood vaccines recommended by the Centers for Disease Control and Prevention have vaccines that contain aluminum, a TH2 adjuvant. To test the hypothesis, mice with hindlimb ischemia, previously vaccinated with ovalbumin (OVA) and aluminum, received OVA-releasing scaffolds. Vaccinated mice receiving OVA-releasing scaffolds locally concentrated antigen-specific TH2 T cells in the surrounding ischemic tissue. This resulted in local angiogenesis, increased perfusion in ischemic limbs, and reduced necrosis and enhanced regenerating myofibers in the muscle. These findings support the premise that antigen depots may provide a treatment for ischemic diseases in patients previously vaccinated with aluminum-containing adjuvants.


Asunto(s)
Isquemia/terapia , Músculo Esquelético/inmunología , Ovalbúmina/farmacología , Células Th2/inmunología , Adyuvantes Inmunológicos/farmacología , Alérgenos/inmunología , Aluminio/inmunología , Aluminio/farmacología , Animales , Antígenos/inmunología , Femenino , Humanos , Isquemia/inmunología , Isquemia/patología , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Miofibrillas/genética , Miofibrillas/inmunología , Necrosis/inmunología , Necrosis/patología , Necrosis/prevención & control , Ovalbúmina/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Células Th2/efectos de los fármacos , Vacunas/inmunología , Vacunas/farmacología
7.
Oncoimmunology ; 8(4): e1568809, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906661

RESUMEN

Immunotherapeutic treatments in head and neck cancer clinical trials include cancer vaccines targeting foreign viral antigens or mutational neoantigens derived from cancer-expressed proteins. Anti-tumor immune responses place cancer cells under selective pressure to lose or downregulate target antigens; therefore, vaccination against virus- or host- "driver" oncogenes are proposed as a strategy to overcome immune escape. Herein, we demonstrate the impact of immunogenic viral antigens on anti-tumor response and immune editing in MOC2-E6E7, a syngeneic murine oral cancer cell line expressing HPV-16 E6 and E7 oncoproteins. Using orthotopic syngeneic models, we observed in vivo tumor growth kinetics of MOC2-E6E7 is delayed in immunocompetent mice compared to parental MOC2 tumors. In contrast, tumor growth remained similar in Rag1-/- mice lacking adaptive immunity. MOC2-E6E7 tumors demonstrated an "inflamed" or immune-activated tumor microenvironment and greater infiltration of CD8+ T cells compared to MOC2. By real-time PCR, we detected downregulation of E6 and E7 genes in MOC2-E6E7 tumors only in immunocompetent mice, suggesting the loss of ectopic viral antigen expression due to immune editing. We then assessed the efficacy of a biomaterials-based mesoporous silica rod (MSR) cancer vaccine targeting HPV-16 E7 in our model. Vaccination induced robust infiltration of antigen-specific CD8+ T cells, which led to tumor growth delay and modestly prolonged survival in MOC2-E6E7 tumors. Increased efficacy was seen in a separate head and neck cancer tumor model, mEER, which obligately expresses E7 antigen. Collectively, our data highlight the need for both immunogenicity and 'driver' status of target antigens to be considered in cancer vaccine design.

8.
Adv Healthc Mater ; 7(10): e1701469, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29441705

RESUMEN

A covalently crosslinked methacrylated (MA)-alginate cryogel vaccine has been previously shown to generate a potent response against murine melanoma, but is not mechanically robust and requires a large 16G needle for delivery. Here, covalent and ionic crosslinking of cryogels are combined with the hypothesis that this will result in a tough MA-alginate cryogel with improved injectability. All tough cryogels can be injected through a smaller, 18G needle without sustaining any damage, while covalently crosslinked-only cryogels break after injection. Cytosine-phosphodiester-guanine (CpG)-delivering tough cryogels effectively activate dendritic cells (DCs). Granulocyte macrophage colony-stimulating factor releasing tough cryogels recruit four times more DCs than blank gels by day 7 in vivo. The tough cryogel vaccine induces strong antigen-specific cytotoxic T-lymphocyte and humoral responses. These vaccines prevent tumor formation in 80% of mice inoculated with HER2/neu-overexpressing DD breast cancer cells. The MA-alginate tough cryogels provide a promising minimally invasive delivery platform for cancer vaccinations.


Asunto(s)
Alginatos/farmacología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/farmacología , Criogeles/farmacología , Neoplasias Mamarias Experimentales/terapia , Alginatos/química , Animales , Linfocitos T CD8-positivos/patología , Vacunas contra el Cáncer/química , Criogeles/química , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología
9.
Bioconjug Chem ; 29(3): 733-741, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29318872

RESUMEN

Short peptides are the minimal modality of antigen recognized by cellular immunity and are therefore considered a safe and highly specific source of antigen for vaccination. Nevertheless, successful peptide immunotherapy is limited by the short half-life of peptide antigens in vivo as well as their weak immunogenicity. We recently reported a vaccine strategy based on dendritic cell-recruiting Mesoporous Silica Rod (MSR) scaffolds to enhance T-cell responses against subunit antigen. In this study, we investigated the effect of covalently conjugating peptide antigens to MSRs to increase their retention in the scaffolds. Using both stable thioether and reducible disulfide linkages, peptide conjugation greatly increased peptide loading compared to passive adsorption. In vitro, Bone Marrow derived Dendritic Cells (BMDCs) could present Ovalbumin (OVA)-derived peptides conjugated to MSRs and induce antigen-specific T-cell proliferation. Stable conjugation decreased presentation in vitro while reducible conjugation maintained levels of presentation as high as soluble peptide. Compared to soluble peptide, in vitro, expansion of OT-II T-cells was not affected by adsorption or stable conjugation to MSRs but was enhanced with reversible conjugation to MSRs. Both conjugation schemes increased peptide residence time in MSR scaffolds in vivo compared to standard bolus injections or a simple adsorption method. When MSR scaffolds loaded with GM-CSF and CpG-ODN were injected subcutaneously, recruited dendritic cells could present antigen in situ with the stable conjugation increasing presentation capacity. Overall, this simple conjugation approach could serve as a versatile platform to efficiently incorporate peptide antigens in MSR vaccines and potentiate cellular responses.


Asunto(s)
Antígenos/química , Células Dendríticas/inmunología , Nanotubos/química , Péptidos/química , Dióxido de Silicio/química , Andamios del Tejido/química , Animales , Antígenos/inmunología , Células Cultivadas , Células Dendríticas/química , Disulfuros/química , Femenino , Inmunidad Celular , Ratones Endogámicos C57BL , Nanotubos/ultraestructura , Ovalbúmina/química , Ovalbúmina/inmunología , Oxidación-Reducción , Péptidos/inmunología , Porosidad , Sulfuros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...