Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Cancer ; 15(10): 2994-3009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706903

RESUMEN

Background: Recently, various evidence has confirmed that Tyrosine Kinase with Immunoglobulin-like and EGF-like domains 1 (TIE1) promotes tumor growth in many cancers. However, the precise mechanism underlying TIE1's involvement in Gastric Cancer (GC) remains elusive. This research aimed to investigate the biological function of TIE1 in regulating GC progression. Methods: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), GEPIA2.0, Sangerbox3.0 and TIMER databases were used to analyze the TIE1 expression. Immunohistochemistry (IHC) was used to demonstrate the expression of TIE1. TCGA, GEPIA2.0 and Kaplan-Meier were utilized for survival analysis and to explore the association of TIE1 with clinicopathological features. Protein-Protein Interaction (PPI) networks were constructed using Cytoscape. The potential molecular mechanism of TIE1 was investigated by Gene Ontology (GO), Kyoto Encyclopedia of Gene Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). We studied the relationships between TIE1 and mutations, immune checkpoints (ICs), tumor mutational burden (TMB), as well as microsatellite instability (MSI) to explore the underlying mechanism of immunity in GC. Results: Compared with normal tissue, TIE1 was significantly overexpressed in GC tissues (p = 0.0072) and was associated with poor survival (P < 0.05). According to GO and KEGG enrichment analyses, TIE1 was enriched in signal pathways related to the occurrence, invasion, and migration of malignant tumors (i.e., PI3K-Akt signaling pathway, Calcium signaling pathway, etc.). Immune infiltration analysis suggested that TIE1 is positively correlated with macrophages M2 and negatively correlated with Mast cells, naive B cells and Follicular helper T cells (TFH), which may be a contributing factor to tumor progression. Furthermore, the research on the tumor microenvironment (TME) and tumor purity also proved that TIE1 may be an oncogene. Mutation analysis showed that the high expression group of TIE1 had a higher frequency of mutations in TP53 and ARID1, while the TMB score was lower. Conclusion: TIE1 might be an oncogene via regulating dysregulated immune infiltration to cause immunosuppression in GC and could be identified as a biomarker for prognosis and a therapeutic target for GC.

2.
Sci Rep ; 14(1): 10746, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730004

RESUMEN

Oxidative stress strongly influences the pathophysiology of erectile dysfunction (ED). In this study, we used the oxidative balance score (OBS), a composite index, to measure the effects of oxidative stress triggered by diet and lifestyle factors. Here, we conducted a cross-sectional study to determine the statistical relationship between OBS and ED among adult males in the U.S. The data from 3318 participants in the National Health and Nutrition Examination Survey (NHANES) 2001-2004 were analyzed. Weighted logistic regression was used to correct for confounding factors and acquire nationwide representative estimates. Generalized additive modeling was used to explore the nonlinear relationship. We also supplemented subgroup and sensitivity analysis to examine the robustness of the main results. Multivariate logistic regression indicated a consistent negative linear association between OBS and ED across all participants [OR (95% CI) = 0.96 (0.94, 0.98)]. After categorizing OBS into tertiles, participants in the highest tertile had 43% lower odds of having ED than those in the lowest tertile [OR (95% CI) = 0.57 (0.37, 0.87)]. The generalized additive model also visualized the linear trend of this association. Furthermore, this linear relationship remained relatively consistent, regardless of whether subgroup or sensitivity analyses were performed. Our findings suggest that adopting a lifestyle and diet pattern that promotes favorable OBS may effectively protect against the development of ED, regardless of the underlying causes.


Asunto(s)
Disfunción Eréctil , Encuestas Nutricionales , Estrés Oxidativo , Humanos , Masculino , Disfunción Eréctil/epidemiología , Disfunción Eréctil/metabolismo , Persona de Mediana Edad , Adulto , Estados Unidos/epidemiología , Estudios Transversales , Estilo de Vida , Anciano , Factores de Riesgo , Dieta
3.
Front Immunol ; 15: 1324959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348052

RESUMEN

Introduction: C-type lectin domain family 11 member A (CLEC11A) was characterized as a growth factor that mainly regulates hematopoietic function and differentiation of bone cells. However, the involvement of CLEC11A in gastric cancer (GC) is not well understood. Methods: Transcriptomic data and clinical information pertaining to GC were obtained and analyzed from publicly available databases. The relationships between CLEC11A and prognoses, genetic alterations, tumor microenvironment (TME), and therapeutic responses in GC patients were analyzed by bioinformatics methods. A CLEC11A-derived immune signature was developed and validated, and its mutational landscapes, immunological characteristics as well as drug sensitivities were explored. A nomogram was established by combining CLEC11A-derived immune signature and clinical factors. The expression and carcinogenic effects of CLEC11A in GC were verified by qRT-PCR, cell migration, invasion, cell cycle analysis, and in vivo model analysis. Myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and T cells in tumor samples extracted from mice were analyzed utilizing flow cytometry analysis. Results: CLEC11A was over-expressed in GC, and the elevated CLEC11A expression indicated an unfavorable prognosis in GC patients. CLEC11A was involved in genomic alterations and associated with the TME in GC. Moreover, elevated CLEC11A was found to reduce the benefit of immunotherapy according to immunophenoscore (IPS) and the tumor immune dysfunction, exclusion (TIDE). After validation, the CLEC11A-derived immune signature demonstrated a consistent ability to predict the survival outcomes in GC patients. A nomogram that quantifies survival probability was constructed to improve the accuracy of prognosis prediction in GC patients. Using shRNA to suppress the expression of CLEC11A led to significant inhibitions of cell cycle progression, migration, and invasion, as well as a marked reduction of in vivo tumor growth. Moreover, the flow cytometry assay showed that the knock-down of CLEC11A increased the infiltration of cytotoxic CD8+ T cells and helper CD4+ T into tumors while decreasing the percentage of M2 macrophages, MDSCs, and Tregs. Conclusion: Collectively, our findings revealed that CLEC11A could be a prognostic and immunological biomarker in GC, and CLEC11A-derived immune signature might serve as a new option for clinicians to predict outcomes and formulate personalized treatment plans for GC patients.


Asunto(s)
Neoplasias Gástricas , Animales , Humanos , Ratones , Bioensayo , Diferenciación Celular , División Celular , Movimiento Celular , Neoplasias Gástricas/genética , Microambiente Tumoral/genética
4.
Clin. transl. oncol. (Print) ; 25(11): 3122-3138, 11 nov. 2023. ilus
Artículo en Inglés | IBECS | ID: ibc-226838

RESUMEN

Although the incidence rate and mortality of gastric/gastroesophageal cancer (G/GEJC) are declining globally, G/GEJC remains a health issue in East Asia. When diagnosed as advanced stage, treatment after serial lines of chemotherapy is limited, with a median overall survival of less than 1 year. Immunotherapy, including immune checkpoint inhibitors (ICIs) and cellular immunotherapy, has changed the prospects of cancer therapy by reversing immune suppression in the tumor microenvironment. As part of this review, we enumerated the clinical uses of ICIs related to the immunosuppressive signaling axis PD-1/PD-L1 and CTLA-4/B7. ICIs were initially approved as a secondary treatment option for patients with severe pretreating advanced gastric and gastroesophageal cancer (AG/GEJC). Till now, it has become the mainstream therapy in combination with chemotherapy and targeted therapy for patients identified by biomarkers. Numerous evidence showed microsatellite instability (MSI), programmed cell death ligand 1 (PD-L1) expression, tumor mutation burden (TMB) and Epstein–Barr virus (EBV) status might be indicative to the use of ICIs. In addition, we discussed the current limitations and prospects of ICIs in AG/GGEJC, as well as the first clinical application of novel CAR-T cell therapies (AU)


Asunto(s)
Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/mortalidad , Antígeno B7-H1/metabolismo , /uso terapéutico , Inmunoterapia , Microambiente Tumoral , Biomarcadores de Tumor/sangre
5.
Medicine (Baltimore) ; 102(40): e35086, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37800802

RESUMEN

During the course of treating non-small cell lung cancer (NSCLC) with epithelial growth factor receptor (EGFR) mutant, gefitinib resistance (GR) is unavoidable. As the environment for tumor cells to grow and survive, tumor microenvironment (TME) can significantly affect therapeutic response and clinical outcomes, offering new opportunities for addressing GR. Dynamic changes within the TME were identified during the treatment of gefitinib, suggesting the close relationship between TME and GR. Various dynamic processes like angiogenesis, hypoxia-pathway activation, and immune evasion can be blocked so as to synergistically enhance the therapeutic effects of gefitinib or reverse GR. Besides, cellular components like macrophages can be reprogrammed for the same purpose. In this review, we summarized recently proposed therapeutic targets to provide an overview of the potential roles of TME in treating gefitinib-resistant NSCLC, and discussed the difficulty of applying these targets in cancer treatment.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Gefitinib , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Gefitinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Microambiente Tumoral
6.
Mol Immunol ; 163: 20-27, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37722180

RESUMEN

The development of Immune checkpoint blockade(ICB) therapy and BRAF- and MEK-targeted therapies has reshaped the survival outcomes of the patients with advanced melanoma. PD-1/PD-L1 blockade was an approved strategy in melanoma treatment. Here we design a PD-L1 xCD3 nanobody as a novel bispecific T cell engager (BiTE) in treating PD-L1 overexpression melanoma. BiTE PD-L1×CD3 Nb was predicted to bind near a large acidic surface on CD3-ε similar to UCHT1-scFv antibody based on alpha-fold and molecular docking. BiTE PD-L1×CD3 Nb and anti-CD3 Nb retained the ability to activate T cells to produce TNF-α and IFN-γ in a dose-dependent manner. The IC50 value of BiTE PD-L1×CD3 Nb was 4.208µg/mL. BiTE PD-L1×CD3 Nb showed obvious cytotoxic activity on both A375WT and A375PD-L1 related to PD-L1 expression level.


Asunto(s)
Anticuerpos Biespecíficos , Melanoma , Humanos , Linfocitos T , Antígeno B7-H1/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Anticuerpos Biespecíficos/farmacología
7.
Clin Transl Oncol ; 25(11): 3122-3138, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37036597

RESUMEN

Although the incidence rate and mortality of gastric/gastroesophageal cancer (G/GEJC) are declining globally, G/GEJC remains a health issue in East Asia. When diagnosed as advanced stage, treatment after serial lines of chemotherapy is limited, with a median overall survival of less than 1 year. Immunotherapy, including immune checkpoint inhibitors (ICIs) and cellular immunotherapy, has changed the prospects of cancer therapy by reversing immune suppression in the tumor microenvironment. As part of this review, we enumerated the clinical uses of ICIs related to the immunosuppressive signaling axis PD-1/PD-L1 and CTLA-4/B7. ICIs were initially approved as a secondary treatment option for patients with severe pretreating advanced gastric and gastroesophageal cancer (AG/GEJC). Till now, it has become the mainstream therapy in combination with chemotherapy and targeted therapy for patients identified by biomarkers. Numerous evidence showed microsatellite instability (MSI), programmed cell death ligand 1 (PD-L1) expression, tumor mutation burden (TMB) and Epstein-Barr virus (EBV) status might be indicative to the use of ICIs. In addition, we discussed the current limitations and prospects of ICIs in AG/GGEJC, as well as the first clinical application of novel CAR-T cell therapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1/metabolismo , Herpesvirus Humano 4 , Inmunoterapia , Neoplasias Gástricas/tratamiento farmacológico , Microambiente Tumoral
8.
J Hazard Mater ; 412: 125209, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33517057

RESUMEN

Real-time and in-situ monitoring of chemical reactions has attracted great attention in many fields. In this work, we in-situ monitored the photodegradation reaction process of methylene blue (MB) by Surface enhanced Raman scattering (SERS) technique. An effective and versatile SERS platform assembled from MoS2 nanoflowers (NFs) and TiO2 nanoparticles (NPs) was prepared successfully. The optimized MoS2/TiO2 substrate (MTi20) exhibits not only an ultra-high SERS response but also the excellent catalytic degradation performance to the contaminant MB, which provided a new material for real-time and in-situ monitoring the photodegradation process. Experiments prove that the detection limit is as low as 10-13 M, and degradation rate is as high as 97.2% in 180 s, respectively. And the activity of the substrate kept in the air for 90 days is almost unchanged. Furthermore, as a practical SERS substrate, MTi20 can also detect trace amounts of other harmful substances including malachite green (MG), bisphenol A (BPA) and endosulfan. Thus, this study come up with a new orientation at the real-time and in-situ monitoring of photocatalytic reaction and may be applied in environmental monitoring and food security fields in the future.

9.
PLoS One ; 11(8): e0161502, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27537181

RESUMEN

In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field.


Asunto(s)
Pichia/metabolismo , Aerobiosis/fisiología , Tamaño de la Célula , ADN de Hongos/genética , Fermentación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Metanol/metabolismo , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Peroxisomas/metabolismo , Pichia/genética , Pichia/ultraestructura , ARN de Hongos/genética
10.
J Chromatogr A ; 1463: 81-9, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27524303

RESUMEN

Designing affinity ligands has always been the development focus of affinity chromatography. Previous antibody affinity ligand designs were mostly based on the crystal structure of protein A (UniProt code number: P38507), and the antibody-binding domains were modified according to the properties of amino acid residues. Currently, more effective bioinformatic prediction and experimental validation has been used to improve the design of antibody affinity ligands. In the present study, the complex crystal structure (the domain D of protein A and the Fab segment of IgM, PDB code: 1DEE) was used as the model. The vital site that inhibits the binding between domain D and IgM was estimated by means of molecular dynamics (MD) simulation, then MM-GBSA calculations were used to design a mutant of domain D (K46E) for improving affinity on the above vital site. The binding analysis using Biacore showed the association and dissociation parameters of K46E mutant that were optimized with IgM. The affinity increase of K46E mutant preferred for IgM, the affinity order is K46E tetramer (KD=6.02×10(-9)M)>K46E mutant (KD=6.66×10(-8)M)>domain D (KD=2.17×10(-7)M). Similar results were obtained when the optimized ligands were immobilized to the chromatography medium. A complete designing strategy was validated in this study, which will provide a novel insight into designing new ligands of antibody affinity chromatography media.


Asunto(s)
Afinidad de Anticuerpos , Cromatografía de Afinidad/métodos , Inmunoglobulina M/química , Simulación de Dinámica Molecular , Proteína Estafilocócica A/química , Afinidad de Anticuerpos/genética , Sitios de Unión de Anticuerpos/genética , Biología Computacional , Ingeniería Genética , Fragmentos Fab de Inmunoglobulinas/química , Ligandos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Unión Proteica/genética , Dominios Proteicos , Proteína Estafilocócica A/genética , Resonancia por Plasmón de Superficie
11.
Cell Biochem Biophys ; 72(3): 719-26, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25627547

RESUMEN

Osteosarcoma is a common type of malignant bone tumor with features of osteoid formation or osteolytic lesions of bone. New therapeutic approaches are urgently needed since it lacks response to chemotherapeutic treatments. Saurolactam, a natural compound isolated from the aerial portions of Saururus chinensis, was reported to have an anti-inflammatory activity. Here, we demonstrate that saurolactam shows anti-cancer activity against human osteosarcoma cells. Saurolactam treatment inhibited proliferation of human osteosarcoma cell lines MG-63 and HOS and decreased colony formation in soft agar in a dose-dependent manner. Intraperitoneal administration of saurolactam at 25 mg/kg of body weight for 21 days dramatically inhibited the growth of MG-63 xenografts in nude mice. Flow cytometric analysis indicated that saurolactam treatment (20 µM) led to G1 cell cycle arrest and induced apoptosis in these two cell lines. Western analysis suggested that saurolactam treatment resulted in a reduction of Akt/PKB, phospho-Ser473-Akt, c-Myc, and S-phase kinase-associated protein 2 (Skp2) in MG-63 and HOS osteosarcoma cells. Akt overexpression significantly abolished saurolactam-induced decrease in protein and phosphorylation levels of Akt, c-Myc, and Skp2 protein levels, implying that Akt inactivation was a causal mediator of saurolactam-induced inhibition of c-Myc and Skp2. Moreover, Skp2 overexpression in MG-63 cells partly abolished the growth inhibition induced by saurolactam. Saurolactam treatment repressed migration and invasion ability, and Skp2 overexpression significantly blocked these inhibitory effects of saurolactam in MG-63 Cells. The present study indicates that saurolactam might represent a new promising agent to improve osteosarcoma treatment.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Isoindoles/farmacología , Osteosarcoma/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular , Humanos , Isoindoles/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Osteosarcoma/metabolismo , Osteosarcoma/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...