Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 18: 6119-6136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915747

RESUMEN

Purpose: Magnetic resonance imaging (MRI) has been a valuable and widely used examination technique in clinical diagnosis and prognostic efficacy evaluation. The introduction of MRI contrast agent (CA) improves its sensitivity obviously, particularly with the development of nano-CA, which presents higher contrast enhancement ability. However, systematical evaluation of their toxicity is still limited, hampering their further translation in clinics. Methods: In this paper, to systematically evaluate the toxicity of nano-CA, Gd-doped mesoporous carbon nanoparticles (Gd-MCNs) prepared by a one-step hard template method were introduced as a model and clinically used MRI CA, Magnevist (Gd-DTPA) as control. Their in vitro blood compatibility, cellular toxicity, DNA damage, oxidative stress, inflammation response as well as in vivo toxicity and MR imaging behaviors were studied and compared. Results: The experimental results showed that compared with Gd-DTPA, Gd-MCNs displayed negligible influence on the red blood cell shape, aggregation, BSA structure, macrophage morphology and mitochondrial function. Meanwhile, limited ROS and inflammatory cytokine production also illustrated the cellular compatibility of Gd-MCNs. For in vivo toxicity evaluation, Gd-MCNs presented acceptable in vivo biosafety even under 12 times injection for 12 weeks. More importantly, at the same concentration of Gd, Gd-MCNs displayed better contrast enhancement of tumor than Gd-DTPA, mainly coming from its high MRI relaxation rate which is nearly 9 times that of Gd-DTPA. Conclusion: In this paper, we focus on the toxicity evaluation of MRI nano-CA, Gd-MCNs from different angles. With Gd-DTPA as control, Gd-MCNs appeared to be highly biocompatible and safe nanoparticles that possessed promising potentials for the use of MRI nano-CA. In the future, more research on the long-term genotoxicity and the fate of nanoparticles after being swallowed should be performed.


Asunto(s)
Gadolinio DTPA , Nanopartículas , Ratones , Animales , Gadolinio DTPA/química , Medios de Contraste/toxicidad , Medios de Contraste/química , Nanopartículas/toxicidad , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Carbono
2.
Angew Chem Int Ed Engl ; 62(39): e202308306, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37461155

RESUMEN

The shortage of narrow band gap polymer acceptors with high electron mobility is the major bottleneck for developing efficient all-polymer solar cells (all-PSCs). Herein, we synthesize a distannylated electron-deficient biselenophene imide monomer (BSeI-Tin) with high purity/reactivity, affording an excellent chance to access acceptor-acceptor (A-A) type polymer acceptors. Copolymerizing BSeI-Tin with dibrominated monomer Y5-Br, the resulting A-A polymer PY5-BSeI shows a higher molecular weight, narrower band gap, deeper-lying frontier molecular orbital levels and larger electron mobility than the donor-acceptor type counterpart PY5-BSe. Consequently, the PY5-BSeI-based all-PSCs deliver a remarkable efficiency of 17.77 % with a high short-circuit current of 24.93 mA cm-2 and fill factor of 75.83 %. This efficiency is much higher than that (10.70 %) of the PY5-BSe-based devices. Our study demonstrates that BSeI is a promising building block for constructing high-performance polymer acceptors and stannylation of electron-deficient building blocks offers an excellent approach to developing A-A type polymers for all-PSCs and even beyond.

3.
Int J Food Microbiol ; 402: 110277, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37331114

RESUMEN

This study evaluated the synergistic antifungal effects of vapor-phase natural agents against Aspergillus flavus with an aim to prevent fungal contamination in agricultural products. Screening different combinations of natural antifungal vapor agents using the checkerboard assay revealed that the cinnamaldehyde and nonanal (SCAN) blend could exert the strongest synergistic antifungal activities against A. flavus, with a minimum inhibitory concentration (MIC) of 0.03 µL/mL, which caused a 76 % decrease in fungal population compared to when each agent was used separately. Subsequent gas chromatography-mass spectrometry (GC/MS) analysis demonstrated that the cinnamaldehyde/nonanal combination was stable and no effects on their individual molecular structures. SCAN at 2 × MIC completely inhibited the fungal conidia production and mycelial growth. The calcofluor white (CFW) and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining assays showed that SCAN treatment could accelerate the destruction of cell wall integrity and accumulation of reactive oxygen species (ROS) in A. flavus. Moreover, pathogenicity assay indicated that in contrast to separate treatment with cinnamaldehyde or nonanal, SCAN could cause a decrease in the production of A. flavus asexual spores and AFB1 on peanuts, which verified its potential synergistic activity against fungal propagation. In addition, SCAN effectively preserves the organoleptic and nutritional properties of stored peanuts. Overall, our findings strongly indicated that the cinnamaldehyde/nonanal combination is a potentially significant antifungal agent against A. flavus contamination during the postharvest storage of peanuts.


Asunto(s)
Antifúngicos , Aspergillus flavus , Antifúngicos/farmacología , Aldehídos/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-36753061

RESUMEN

n-Doped small molecular organic thermoelectric materials (OTMs) hold advantages of high Seebeck coefficient and better performance reproducibility over their polymeric analogues; however, high-performance n-type small molecular OTMs are severely lacking. We report here a class of small molecular OTMs based on terminal cyanation of a bithiophene imide-based ladder-type heteroarene BTI2. It was found that the cyanation could effectively lower the lowest unoccupied molecular orbital (LUMO) level from -2.90 eV (BTI2) to -4.14 eV (BTI2-4CN) and thus lead to significantly improved n-doping efficiency. Additionally, terminal cyano-functionalization can maintain the close packing and efficient intermolecular charge transfer between these cyanated molecules, thus yielding high electron mobilities of up to 0.40 cm2 V-1 s-1. Benefiting from its low LUMO-enabled efficient n-doping and high electron mobility, an encouraging n-type electrical conductivity of 0.43 S cm-1 and power factor (PF) of 6.34 µW m-1 K-2 were achieved for tetracyanated BTI2-4CN, significantly outperforming those of its noncynated BTI2 (<10-7 S cm-1, PF undetectable) and dicyanated BTI2-2CN (0.24 S cm-1, 1.78 µW m-1 K-2). These results suggest the great potential of the terminal cyanation strategy of ladder-type heteroarenes for developing high-performance small molecular OTMs.

5.
Int J Food Microbiol ; 384: 109972, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36279642

RESUMEN

Plant-derived substances as antifungal agents have received considerable attention in recent years to reduce the use of chemical fungicides in food preservatives. In this study, honokiol, a type of phenolic compound in Magnolia officinalis, was found to inhibit spore germination and mycelia growth of Aspergillus flavus at 100 µg/mL. In addition, a pathogenicity assay showed that honokiol had potent antifungal activity against A. flavus in corn flour by suppressing conidia production. Fluorescence staining, transmission electron microscopy and biochemical assays were performed to explore its possible inhibition mechanisms against A. flavus. The results showed that the destructive effect of honokiol on A. flavus appeared to be related to increased plasma membrane permeability, the inhibition of ATPase activity, mitochondrial dysfunction and the accumulation of reactive oxygen species. Furthermore, a transcriptomic analysis showed that honokiol treatment resulted in 1578 different expressed genes. Gen Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that some genes of A. flavus related to spore development, integrity of the cell wall and membrane, oxidative stress and energy metabolism were significantly downregulated. In addition, RNA-seq results were validated by quantitative real-time polymerase chain reactions. Our finding enhanced the understanding of the antifungal activity of honokiol and underlying mechanisms of action at the molecular level, supporting honokiol as a potential agent in preventing contamination by A. flavus.


Asunto(s)
Aspergillus flavus , Lignanos , Antifúngicos/metabolismo , Transcriptoma , Lignanos/farmacología , Lignanos/metabolismo
6.
J Food Biochem ; 46(12): e14495, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36322387

RESUMEN

Lysine acetylation is a common post-translational modification of proteins within all organisms. However, quantitative acetylome characterization in wheat seed during aging in storage has not been reported. This study reports the first large-scale acetylome analysis of wheat seeds after artificial aging treatment, using the quantitative proteomic approach. In total, 11,002 acetylation sites, corresponding to 4262 acetylated proteins were identified, of which 1207 acetylated sites, representing 783 acetylated proteins, were significantly more or less acetylated after artificial aging. Functional analysis demonstrated that the majority of the acetylated proteins are closely involved with cellular and metabolic functions. In particular, key enzymes in the oxidative stress response and energy metabolism were significantly differentially acetylated and appear to be heavily involved in wheat seed aging. The acetylome analysis was verified by quantitative real-time PCR and enzyme activity determination. Lysine-acetylation results in a weaker oxidative stress response and lower energy production efficiency, resulting in the apoptosis of wheat seed cells, insufficient energy supply at the germination stage, and consequently, marked loss of seed vigor. PRACTICAL APPLICATIONS: It is known that the loss of protein function is an important reason for the decrease of seed vigor. Therefore, the change of protein function in the process of wheat seed aging was studied by proteome and lysine acetylome analysis technology. The results showed that the oxidation-reduction imbalance and the decrease of energy production efficiency of seeds were the important reasons for the decrease of their vigor. This will provide a new idea for green and safe storage of grain.


Asunto(s)
Lisina , Proteoma , Lisina/metabolismo , Proteoma/análisis , Triticum/genética , Triticum/metabolismo , Proteómica/métodos , Semillas/química , Estrés Oxidativo , Oxidación-Reducción
7.
PLoS One ; 17(3): e0263553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35358205

RESUMEN

During the seed aging process, reactive oxygen species (ROS) can induce the carbonylation of proteins, which changes their functional properties and affects seed vigor. However, the impact and regulatory mechanisms of protein carbonylation on wheat seed vigor are still unclear. In this study, we investigated the changes in wheat seed vigor, carbonyl protein content, ROS content and embryo cell structure during an artificial aging process, and we analyzed the correlation between protein carbonylation and seed vigor. During the artificial wheat-seed aging process, the activity levels of antioxidant enzymes and the contents of non-enzyme antioxidants decreased, leading to the accumulation of ROS and an increase in the carbonyl protein content, which ultimately led to a decrease in seed vigor, and there was a significant negative correlation between seed vigor and carbonyl protein content. Moreover, transmission electron microscopy showed that the contents of protein bodies in the embryo cells decreased remarkably. We postulate that during the wheat seed aging process, an imbalance in ROS production and elimination in embryo cells leads to the carbonylation of proteins, which plays a negative role in wheat seed vigor.


Asunto(s)
Semillas , Triticum , Antioxidantes/metabolismo , Germinación , Carbonilación Proteica , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Triticum/metabolismo
8.
Angew Chem Int Ed Engl ; 60(45): 24198-24205, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34467624

RESUMEN

The development of n-type organic electrochemical transistors (OECTs) lags far behind their p-type counterparts. In order to address this dilemma, we report here two new fused bithiophene imide dimer (f-BTI2)-based n-type polymers with a branched methyl end-capped glycol side chain, which exhibit good solubility, low-lying LUMO energy levels, favorable polymer chain orientation, and efficient ion transport property, thus yielding a remarkable OECT electron mobility (µe ) of up to ≈10-2  cm2 V-1 s-1 and volumetric capacitance (C*) as high as 443 F cm-3 , simultaneously. As a result, the f-BTI2TEG-FT-based OECTs deliver a record-high maximum geometry-normalized transconductance of 4.60 S cm-1 and a maximum µC* product of 15.2 F cm-1 V-1 s-1 . The µC* figure of merit is more than one order of magnitude higher than that of the state-of-the-art n-type OECTs. The emergence of f-BTI2TEG-FT brings a new paradigm for developing high-performance n-type polymers for low-power OECT applications.

9.
Adv Mater ; 33(37): e2102635, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34338383

RESUMEN

Narrow-bandgap n-type polymers with high electron mobility are urgently demanded for the development of all-polymer solar cells (all-PSCs). Here, two regioregular narrow-bandgap polymer acceptors, L15 and MBTI, with two electron-deficient segments are synthesized by copolymerizing two dibrominated fused-ring electron acceptors (FREA) with distannylated aromatic imide, respectively. Taking full advantage of the FREA and the imide, both polymer acceptors show narrow bandgap and high electron mobility. Benefiting from the more extended absorption, better backbone ordering, and higher electron mobility than those of its regiorandom analog, the L15-based all-PSC yields a high power conversion efficiency (PCE) of 15.2% when blended with the polymer donor PM6. More importantly, MBTI incorporating a benzothiophene-core FREA segment shows relatively higher frontier molecular orbital levels than L15, forming a cascade-like energy level alignment with L15 and PM6. Based on this, ternary all-PSCs are designed where MBTI is introduced as a guest into the PM6:L15 host system. Thanks to further optimal blend morphology and more balanced charge transport, the PCE is improved up to 16.2%, which is among the highest values for all-PSCs. The results demonstrate that combining an FREA and an aromatic imide to construct regioregular narrow-bandgap polymer acceptors provides an effective approach to fabricate highly efficient all-PSCs.

10.
Front Genet ; 12: 641526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995480

RESUMEN

Long non-coding RNA (LncRNA) has high expression in the brain. Animal studies have shown that lncRNA plays an important role in brain functions and mediates the development of many neurological diseases. However, data on the expression of lncRNAs and the clinical significance in prematurely born infants with diseases such as periventricular white matter damage (PWMD) remains scant. Here, we compared the expression of the lncRNAs in whole blood samples obtained from prematurely born infants with PWMD with samples from prematurely born infants without PWMD. Our data demonstrated differential expression of the lncRNAs between the two groups. Further, we showed that the lncRNAs play important roles in the development of PWMD. Our findings give insights into the functions of the lncRNAs in PWMD and provide evidence for the improvement of diagnostic and treatment strategies in infants with PWMD.

11.
Ann Palliat Med ; 10(12): 12244-12250, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35016476

RESUMEN

BACKGROUND: The purpose of this study was to evaluate the effects of monovalent and divalent cations on the stability of a fat emulsion (Lipovenoes MCT) in total nutrient admixtures (TNAs) by testing the percentage of fat residing in globules >5 µm (PFAT5) values. METHODS: TNAs with different combinations of glucose (5% and 10%), amino acids (3.35 and 4.5 g/100 mL), Na+/K+ (100/39 mmol/L), Mg2+ (3.4 and 2.7 mmol/L), and fat emulsion (2.4%) were tested in triplicate at room temperature. The pH, mean droplet size (MDS), and PFAT5 were assessed at 0, 6, 12, 24, 36, and 48 h. RESULTS: In all seven groups, the TNA globule distribution was uniform, the pH value fluctuated in the range of 5.93-6.06, and the MDS met the limit of the United States Pharmacopeia (USP) within 48 h. The PFAT5 value of the control group 0 without electrolytes was the lowest; group 1 added monovalent ions of 139 mmol/L was significantly higher (P<0.05) but without exceed the USP limit after 48 h. Groups 2 and 3 added Mg2+ 3.4 and 2.7 mmol/L respectively, based on group 1. Group 4 increased the amino acid concentration from 3.35% to 4.5% based on group 2, and group 5 reduced the glucose concentration from 10% to 5% based on group 4. Group 6 removed monovalent ions and retained only Mg2+ based on group 5. The PFAT5 values of group 2, 3, 4, and 5 exceeded the limit after 6 h and group 6 after 12 h. There was no statistical difference between group 2 and 4 (P>0.05) or between group 4 and 5 (P>0.05). CONCLUSIONS: When the concentration of glucose is 10-25% and the amino acid is 2.5-4.5%, The addition of monovalent ions affects the stability of fat emulsion in TNAs, however when the concentrations of Na+ ≤100 mmol/L and K+ ≤39 mmol/L, the PFAT5 value will not exceed the USP limit within 24 h. Mg2+ has a significant effect, the PFAT5 value will exceed the USP limit after 6 h when the concentration ≥2.7 mmol/L, which may cause potential safety hazards.


Asunto(s)
Emulsiones Grasas Intravenosas , Nutrientes , Estabilidad de Medicamentos , Glucosa , Humanos , Tamaño de la Partícula
12.
Genomics ; 112(4): 2875-2885, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32247005

RESUMEN

Circular RNAs (circRNAs) are evolutionarily conserved and tissue-specific types of non-coding RNA and can serve as potential diagnostic biomarkers for disease. However, the clinical significance and levels of expression of circRNAs for whole blood samples of prematurely born infants afflicted by diseases such as periventricular white matter damage (PWMD) are largely unknown. Therefore, we sought to identify measures of expression of circRNAs in whole blood samples obtained from prematurely born infants afflicted by PWMD and comparatively in samples from prematurely born infants without PWMD. We found the expression levels of circRNAs which from premature with PWMD has changed. Further analysis suggests that these circRNAs have important roles in PWMD. This study can improve the understanding for the potential of the circRNAs to serve as biomarkers in PWMD. Moreover, these circRNAs may provide evidence for improving diagnosis and treatment for infants afflicted by PWMD, and merits continued research.


Asunto(s)
Enfermedades del Prematuro/genética , Leucoencefalopatías/genética , ARN Circular/sangre , Biomarcadores/sangre , Encéfalo/diagnóstico por imagen , Femenino , Regulación de la Expresión Génica , Humanos , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/sangre , Enfermedades del Prematuro/diagnóstico , Enfermedades del Prematuro/diagnóstico por imagen , Leucoencefalopatías/sangre , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , MicroARNs/metabolismo , ARN Circular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Cell Mol Med ; 23(7): 4808-4818, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31094081

RESUMEN

Coagulase (Coa) activity is essential for the virulence of Staphylococcus aureus (S aureus), one of the most important pathogenic bacteria leading to catheter-related bloodstream infections (CRBSI). We have demonstrated that the mutation of coagulase improved outcomes in disease models of S aureus CRBSI, suggesting that targeting Coa may represent a novel antiinfective strategy for CRBSI. Here, we found that quercetin, a natural compound that does not affect S aureus viability, could inhibit Coa activity. Chemical biological analysis revealed that the direct engagement of quercetin with the active site (residues Tyr187, Leu221 and His228) of Coa inhibited its activity. Furthermore, treatment with quercetin reduced the retention of bacteria on catheter surfaces, decreased the bacterial load in the kidneys and alleviated kidney abscesses in vivo. These data suggest that antiinfective therapy targeting Coa with quercetin may represent a novel strategy and provide a new leading compound with which to combat bacterial infections.


Asunto(s)
Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Infecciones Relacionadas con Catéteres/microbiología , Coagulasa/antagonistas & inhibidores , Sustancias Protectoras/uso terapéutico , Quercetina/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/enzimología , Animales , Adhesión Bacteriana/efectos de los fármacos , Sitios de Unión , Materiales Biocompatibles/farmacología , Coagulasa/genética , Coagulasa/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Femenino , Simulación de Dinámica Molecular , Mutación/genética , Sustancias Protectoras/farmacología , Quercetina/química , Quercetina/farmacología , Conejos , Ratas Wistar , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/ultraestructura , Temperatura , Termodinámica
14.
Front Microbiol ; 10: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30728809

RESUMEN

Von Willebrand factor-binding protein (vWbp), secreted by Staphylococcus aureus (S. aureus), can activate host prothrombin, convert fibrinogen to fibrin clots, induce blood clotting, and contribute to pathophysiology of S. aureus-related diseases, including infective endocarditis, staphylococcal sepsis and pneumonia. Therefore, vWbp is an promising drug target in the treatment of S. aureus-related infections. Here, we report that dryocrassin ABBA (ABBA), a natural compound derived from Dryopteris crassirhizoma, can significantly inhibit the coagulase activity of vWbp in vitro by directly interacting with vWbp without killing the bacteria or inhibiting the expression of the vWbp. Using molecular dynamics simulations, we demonstrate that ABBA binds to the "central cavity" in the elbow of vWbp by interacting with Arg-70, His-71, Ala-72, Gly-73, Tyr-74, Glu-75, Tyr-83, and Gln-87 in vWbp, thus interfering with the binding of vWbp to prothrombin. Furthermore, in vivo studies demonstrated that ABBA can attenuate injury and inflammation of mouse lung tissues caused by S. aureus and increase survival of mice. Together these findings indicate that ABBA is a promising lead drug for the treatment of S. aureus-related infections. This is the first report of potential inhibitor which inhibit the coagulase activity of vWbp by directly interacting with vWbp.

15.
Carbohydr Polym ; 203: 378-385, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318226

RESUMEN

Although chemotherapy has been widely used in the treatment of many kinds of cancer, drug resistance and side effects are the main obstacles in the cancer chemotherapy that result in an inferior therapeutic outcome. For the design of drug delivery system, extracellular stability and intracellular effective release are also a pair of contradictions. In this research, gold nanorods (AuNRs) loaded hyaluronic acid (HA) nanogels with reduction sensitivity were prepared for the efficient intracellular delivery of doxorubicin (DOX). The aforementioned HA-CysNG@AuNR nanogels with cystamine (Cys) as crosslinker could remain stable in the physiological condition and release DOX rapidly in the mimic intracellular glutathione (GSH) condition. Meanwhile, the cellular uptake efficiency by the human breast carcinoma (MCF-7) cells was enhanced because of the highly expressed HA receptor (CD44) on the cytomembrane. However, further cell experiments verified that it was difficult to achieve desired results for drug-resistant human breast cancer (MCF-7 ADR) cells due to the reduced drug uptake and enhanced drug efflux. Interestingly, this multidrug resistance of MCF-7 ADR cells could be reversed after treated with near-infrared (NIR) light. This might ascribe to the hyperthermia generated by AuNRs under NIR, which suspended drug efflux process and led to excellent hyperthermia-assisted chemotherapy outcome. Overall, our studies suggested that AuNRs loaded reduction-sensitive HA nanogels were excellent candidates of drug carriers to reverse the drug-resistance and induce severe apoptosis of drug-resistant MCF-7 ADR cells.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Geles/química , Ácido Hialurónico/química , Antineoplásicos/química , Reactivos de Enlaces Cruzados/química , Cistamina/química , Doxorrubicina/química , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Geles/síntesis química , Oro/química , Oro/efectos de la radiación , Calefacción , Humanos , Ácido Hialurónico/síntesis química , Rayos Infrarrojos , Células MCF-7 , Nanotubos/química , Nanotubos/efectos de la radiación , Oxidación-Reducción
16.
Chem Biol Drug Des ; 92(2): 1458-1467, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29671947

RESUMEN

The antibiotic resistance (ARE) subfamily of ABC (ATP-binding cassette) proteins confers resistance to a variety of clinically important ribosome-targeting antibiotics and plays an important role in infections caused by pathogenic bacteria. However, inhibitors of ARE proteins have rarely been reported. Here, OptrA, a new member of the ARE proteins, was used to study inhibitors of these types of proteins. We first confirmed that destroying the catalytic activity of OptrA could restore the sensitivity of host cells to antibiotics. Then, fragment-based screening, a drug screening method, was used to screen for inhibitors of OptrA. The competitive saturation transfer difference experiments, docking, and molecular dynamics were used to determine the binding sites and mode of interactions between OptrA and fragment screening hits. In this study, we first find a novel and specific inhibitor of OptrA (CP1), which suppressed the ATPase activity of OptrA in vitro by 30%. A hydrogen bond formed between the 8-position phenylcyclic cyano group in CP1 and the amino acid residue Lys-271 allows CP1 to form a stable complex with OptrA protein. These findings provide a theoretical basis for the further optimization of the inhibitor structure to obtain inhibitors with higher efficiencies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cianuros/química , Cianuros/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína
17.
Colloids Surf B Biointerfaces ; 161: 279-287, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29096372

RESUMEN

The microbubble is a kind of clinically applied ultrasound contrast agent in disease diagnosis that can also rupture under sonication to increase membrane permeability and promote gene entry into targeted cells. However, the development of ultrasound-mediated gene delivery might be restricted because genes and microbubbles were separated and would not reach the targeted cells simultaneously. Herein, a kind of crosslinked positive microbubbles (CPMBs) were prepared to load DNA as gene vectors to promote gene delivery efficiency. The BSA shell of the CPMBs was crosslinked with disulfide bonds, which obviously enhanced the stability of the CPMBs. Furthermore, the CPMBs revealed sonoporation effects comparable to those of clinically applied SonoVue microbubbles. As DNA and CPMBs were electrostatically linked as an entirety, they would reach cells simultaneously. Thus, with the aid of ultrasound, these DNA-loaded microbubbles promoted DNA entry into cytoplasm more effectively and obtained higher cellular uptake efficiency and better transfection efficiency than DNA-mixed microbubbles. Confocal microscopy results showed that rupturing of the CPMBs/DNA entire microbubbles under sonication could carry DNA directly into the cytoplasm or nucleus. All results indicated that the cytocompatible DNA-loaded microbubbles have promising prospects in ultrasound-mediated gene delivery.


Asunto(s)
ADN/química , Microburbujas , Albúmina Sérica Bovina/química , Sonicación , Transfección/métodos , Animales , Bovinos , Supervivencia Celular , ADN/genética , ADN/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células Hep G2 , Humanos , Microscopía Electrónica de Rastreo
18.
Front Microbiol ; 8: 2263, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29187848

RESUMEN

The ability to form biofilms on surfaces makes Staphylococcus aureus the main pathogenic factor in implanted medical device infections. The aim of this study was to discover a biofilm inhibitor distinct from the antibiotics used to prevent infections resulting from S. aureus biofilms. Here, we describe kaempferol, a small molecule with anti-biofilm activity that specifically inhibited the formation of S. aureus biofilms. Crystal violet (CV) staining and fluorescence microscopy clearly showed that 64 µg/ml kaempferol inhibited biofilm formation by 80%. Meanwhile, the minimum inhibitory concentration (MIC) and growth curve results indicated that kaempferol had no antibacterial activity against the tested bacterial strain. Kaempferol inhibited the primary attachment phase of biofilm formation, as determined by a fibrinogen-binding assay. Moreover, a fluorescence resonance energy transfer (FRET) assay and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that kaempferol reduced the activity of S. aureus sortaseA (SrtA) and the expression of adhesion-related genes. Based on these results, kaempferol provides a starting point for the development of novel anti-biofilm drugs, which may decrease the risk of bacterial drug resistance, to prevent S. aureus biofilm-related infections.

19.
Appl Microbiol Biotechnol ; 101(17): 6671-6681, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28710559

RESUMEN

Staphylococcus aureus (S. aureus) biofilms are clinically serious and play a critical role in the persistence of chronic infections due to their ability to resist antibiotics. The inhibition of biofilm formation is viewed as a new strategy for the prevention of S. aureus infections. Here, we demonstrated that minimum inhibitory concentrations (MICs) of aloe-emodin exhibited no bactericidal activity against S. aureus but affected S. aureus biofilm development in a dose-dependent manner. Further studies indicated that aloe-emodin specifically inhibits the initial adhesion and proliferation stages of S. aureus biofilm development. Scanning electron microscopy (SEM) indicated that the S. aureus ATCC29213 biofilm extracellular matrix is mainly composed of protein. Laser scanning confocal microscope assays revealed that aloe-emodin treatment primarily inhibited extracellular protein production. Moreover, the Congo red assay showed that aloe-emodin also reduced the accumulation of polysaccharide intercellular adhesin (PIA) on the cell surface. These findings will provide new insights into the mode of action of aloe-emodin in the treatment of infections by S. aureus biofilms.


Asunto(s)
Antraquinonas/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Polisacáridos Bacterianos/antagonistas & inhibidores , Staphylococcus aureus/fisiología , Staphylococcus aureus/ultraestructura
20.
J Microbiol Methods ; 139: 79-86, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28522389

RESUMEN

The understanding of the genetic mechanism of Staphylococcus aureus requires efficient tools, however, genetic manipulation in S. aureus is always laborious and time-consuming. Here we proposed a novel CRISPR/dCas9 interference method for the rapid knockdown of target genes. Furthermore, multiple genes can be repressed simultaneously by using this method.


Asunto(s)
Sistemas CRISPR-Cas , Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Staphylococcus aureus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...