Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genom Data ; 25(1): 57, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858616

RESUMEN

The Quercus L. species is widely recognized as a significant group in the broad-leaved evergreen forests of tropical and subtropical East Asia. These plants hold immense economic value for their use as firewood, furniture, and street trees. However, the identification of Quercus species is considered challenging, and the relationships between these species remain unclear. In this study, we sequenced and assembled the chloroplast (cp.) genomes of four Quercus section Cyclobalanopsis species (Quercus disciformis, Quercus dinghuensis, Quercus blackei, and Quercus hui). Additionally, we retrieved six published cp. genome sequences of Cyclobalanopsis species (Quercus fleuryi, Quercus pachyloma, Quercus ningangensis, Quercus litseoides, Quercus gilva, and Quercus myrsinifolia). Our aim was to perform comparative genomics and phylogenetic analyses of the cp. whole genome sequences of ten Quercus section Cyclobalanopsis species. The results revealed that: (1) Quercus species exhibit a typical tetrad structure, with the cp. genome lengths of the newly sequenced species (Q. disciformis, Q. dinghuensis, Q. blakei, and Q. hui) being 160,805 bp, 160,801 bp, 160,787 bp, and 160,806 bp, respectively; (2) 469 SSRs were detected, among which A/T base repeats were the most common; (3) no rearrangements or inversions were detected within the chloroplast genomes. Genes with high nucleotide polymorphism, such as rps14-psaB, ndhJ-ndhK, rbcL-accD, and rps19-rpl2_2, provided potential reference loci for molecular identification within the Cyclobalanopsis section; (4) phylogenetic analysis showed that the four sections of Cyclobalanopsis were grouped into sister taxa, with Q. hui being the first to diverge from the evolutionary branch and Q. disciformis being the most closely related to Q. blackei. The results of this study form the basis for future studies on taxonomy and phylogenetics.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Quercus , Quercus/genética , Genoma del Cloroplasto/genética
2.
Sci Rep ; 13(1): 18731, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907468

RESUMEN

The identification in Quercus L. species was considered to be difficult all the time. The fundamental phylogenies of Quercus have already been discussed by morphological and molecular means. However, the morphological characteristics of some Quercus groups may not be consistent with the molecular results (such as the group Helferiana), which may lead to blurring of species relationships and prevent further evolutionary researches. To understand the interspecific relationships and phylogenetic positions, we sequenced and assembled the CPGs (160,715 bp-160842 bp) of four Quercus section Cyclobalanopsis species by Illumina pair-end sequencing. The genomic structure, GC content, and IR/SC boundaries exhibited significant conservatism. Six highly variable hotspots were detected in comparison analysis, among which rpoC1, clpP and ycf1 could be used as molecular markers. Besides, two genes (petA, ycf2) were detected to be under positive selection pressure. The phylogenetic analysis showed: Trigonobalanus genus and Fagus genus located at the base of the phylogeny tree; The Quercus genus species were distincted to two clades, including five sections. All Compound Trichome Base species clustered into a single branch, which was in accordance with the results of the morphological studies. But neither of group Gilva nor group Helferiana had formed a monophyly. Six Compound Trichome Base species gathered together in pairs to form three branch respectively (Quercus kerrii and Quercus chungii; Quercus austrocochinchinensis with Quercus gilva; Quercus helferiana and Quercus rex). Due to a low support rate (0.338) in the phylogeny tree, the interspecies relationship between the two branches differentiated by this node remained unclear. We believe that Q. helferiana and Q. kerrii can exist as independent species due to their distance in the phylogeny tree. Our study provided genetic information in Quercus genus, which could be applied to further studies in taxonomy and phylogenetics.


Asunto(s)
Genoma del Cloroplasto , Quercus , Filogenia , Quercus/genética , Análisis de Secuencia de ADN/métodos , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA