Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(1): eadi3664, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38170774

RESUMEN

Sculpting the epigenome with a combination of histone modifications and transcription factor occupancy determines gene transcription and cell fate specification. Here, we first develop uCoTarget, utilizing a split-pool barcoding strategy for realizing ultrahigh-throughput single-cell joint profiling of multiple epigenetic proteins. Through extensive optimization for sensitivity and multimodality resolution, we demonstrate that uCoTarget enables simultaneous detection of five histone modifications (H3K27ac, H3K4me3, H3K4me1, H3K36me3, and H3K27me3) in 19,860 single cells. We applied uCoTarget to the in vitro generation of hematopoietic stem/progenitor cells (HSPCs) from human embryonic stem cells, presenting multimodal epigenomic profiles in 26,418 single cells. uCoTarget reveals establishment of pairing of HSPC enhancers (H3K27ac) and promoters (H3K4me3) and RUNX1 engagement priming for H3K27ac activation along the HSPC path. We then develop uCoTargetX, an expansion of uCoTarget to simultaneously measure transcriptome and multiple epigenome targets. Together, our methods enable generalizable, versatile multimodal profiles for reconstructing comprehensive epigenome and transcriptome landscapes and analyzing the regulatory interplay at single-cell level.


Asunto(s)
Metilación de ADN , Epigenómica , Humanos , Epigenómica/métodos , Regulación de la Expresión Génica , Transcriptoma , Epigénesis Genética
2.
iScience ; 26(4): 106509, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37102151

RESUMEN

Cell type-specific expression of the developmental gene is conferred by distinct enhancer elements. Current knowledge about mechanisms in Nkx2-5 transcriptional regulation and its specific roles in multistage heart morphogenesis is limited. We comprehensively interrogate enhancers U1 and U2 in controlling Nkx2-5 transcription during heart development. Serial genomic deletions in mice reveal U1 and U2 function redundantly to confer Nkx2-5 expression at early stages, but U2 instead of U1 supports its expression at later stages. Combined deletions markedly reduce Nkx2-5 dosage as early as E7.5, despite being largely reinstated two days later, displaying heart malformations with precocious differentiation of cardiac progenitors. Cutting-edge low-input chromatin immunoprecipitation sequencing (ChIP-seq) confirmed that not only genomic NKX2-5 occupancy but also its regulated enhancer landscape is mostly disturbed in the double-deletion mouse hearts. Together, we propose a model that the temporal and partially compensatory regulatory function of two enhancers dictates a transcription factor (TF)'s dosage and specificity during development.

3.
Nat Commun ; 13(1): 346, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039499

RESUMEN

The gene activity underlying cell differentiation is regulated by a diverse set of transcription factors (TFs), histone modifications, chromatin structures and more. Although definitive hematopoietic stem cells (HSCs) are known to emerge via endothelial-to-hematopoietic transition (EHT), how the multi-layered epigenome is sequentially unfolded in a small portion of endothelial cells (ECs) transitioning into the hematopoietic fate remains elusive. With optimized low-input itChIP-seq and Hi-C assays, we performed multi-omics dissection of the HSC ontogeny trajectory across early arterial ECs (eAECs), hemogenic endothelial cells (HECs), pre-HSCs and long-term HSCs (LT-HSCs) in mouse embryos. Interestingly, HSC regulatory regions are already pre-configurated with active histone modifications as early as eAECs, preceding chromatin looping dynamics within topologically associating domains. Chromatin looping structures between enhancers and promoters only become gradually strengthened over time. Notably, RUNX1, a master TF for hematopoiesis, enriched at half of these loops is observed early from eAECs through pre-HSCs but its enrichment further increases in HSCs. RUNX1 and co-TFs together constitute a central, progressively intensified enhancer-promoter interactions. Thus, our study provides a framework to decipher how temporal epigenomic configurations fulfill cell lineage specification during development.


Asunto(s)
Cromatina/química , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Código de Histonas , Animales , Análisis por Conglomerados , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Elementos de Facilitación Genéticos/genética , Genoma , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
4.
Nat Cell Biol ; 21(9): 1164-1172, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481796

RESUMEN

Single-cell measurement of chromatin states, including histone modifications and non-histone protein binding, remains challenging. Here, we present a low-cost, efficient, simultaneous indexing and tagmentation-based ChIP-seq (itChIP-seq) method, compatible with both low cellular input and single cells for profiling chromatin states. itChIP combines chromatin opening, simultaneous cellular indexing and chromatin tagmentation within a single tube, enabling the processing of samples from tens of single cells to, more commonly, thousands of single cells per assay. We demonstrate that single-cell itChIP-seq (sc-itChIP-seq) yields ~9,000 unique reads per cell. Using sc-itChIP-seq to profile H3K27ac, we sufficiently capture the earliest epigenetic priming event during the cell fate transition from naive to primed pluripotency, and reveal the basis for cell-type specific enhancer usage during the differentiation of bipotent cardiac progenitor cells into endothelial cells and cardiomyocytes. Our results demonstrate that itChIP is a widely applicable technology for single-cell chromatin profiling of epigenetically heterogeneous cell populations in many biological processes.


Asunto(s)
Cromatina/metabolismo , Células Endoteliales/metabolismo , Procesamiento Proteico-Postraduccional/genética , Análisis de Secuencia de ADN , Animales , Sitios de Unión , Inmunoprecipitación de Cromatina/métodos , Epigenómica/métodos , Histonas/metabolismo , Ratones Transgénicos , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...