Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2405170, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838950

RESUMEN

High-entropy strategies are regarded as a powerful means to enhance performance in energy storage fields. The improved properties are invariably ascribed to entropy stabilization or synergistic cocktail effect. Therefore, the manifested properties in such multicomponent materials are usually unpredictable. Elucidating the precise correlations between atomic structures and properties remains a challenge in high-entropy materials (HEMs). Herein, atomic-resolution scanning transmission electron microscopy annular dark field (STEM-ADF) imaging and four dimensions (4D)-STEM are combined to directly visualize atomic-scale structural and electric information in high-entropy FeMnNiVZnPS3. Aperiodic stacking is found in FeMnNiVZnPS3 accompanied by high-density strain soliton boundaries (SSBs). Theoretical calculation suggests that the formation of such structures is attributed to the imbalanced stress of distinct metal-sulfur bonds in FeMnNiVZnPS3. Interestingly, the electric field concentrates along the two sides of SSBs and gradually diminishes toward the two-dimensional (2D) plane to generate a unique electric field gradient, strongly promoting the ion-diffusion rate. Accordingly, high-entropy FeMnNiVZnPS3 demonstrates superior ion-diffusion coefficients of 10-9.7-10-8.3 cm2 s-1 and high-rate performance (311.5 mAh g-1 at 30 A g-1). This work provides an alternative way for the atomic-scale understanding and design of sophisticated HEMs, paving the way for property engineering in multi-component materials.

2.
Angew Chem Int Ed Engl ; 63(29): e202405593, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38716660

RESUMEN

For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel detrimental anions (SO4 2- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.79 mAh cm-2).

3.
Nano Lett ; 24(22): 6465-6473, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767853

RESUMEN

Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF2 chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition. Simultaneously, ion radius reduced multiple F-containing Se conversion intermediates form, enhancing the interion interaction of charged products to suppress the shuttle effect. Consequently, Zn||Se batteries deliver a ca. 20-fold prolonged lifespan (2000 cycles) at 1 A g-1 and high energy/power density of 416.7 Wh kgSe-1/1.89 kW kgSe-1, outperforming those in F-free counterparts. Pouch cells with distinct plateaus and durable cyclability further substantiate the practicality of this design.

4.
Angew Chem Int Ed Engl ; 63(15): e202400121, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38287460

RESUMEN

Bipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high-energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high-voltage/capacity merits. Herein, we initially report dynamically ion-coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue. Unlike conventional organic functional groups, chalcogens bonded with conjugated group undergo multielectron-involved positive-valence oxidation and negative-valence reduction, affording higher redox potentials and reversible capacities. With phenyl diselenide (PhSe-SePh, PDSe) as a proof of concept, it exhibits a conversion pathway from (PhSe)- to (PhSe-SePh)0 and then to (PhSe)+ as unveiled by characterization and theoretical simulation, where the diselenide bonds are periodically broken and healed, dynamically coordinating with ions (Zn2+ and OTF-). When confined into ordered mesoporous carbon (CMK-3), the dissolution of PDSe intermediates is greatly inhibited to obtain an ultralong lifespan without voltage/capacity compromise. The PDSe/CMK-3 || Zn batteries display high reversibility capacity (621.4 mAh gPDSe -1), distinct discharge plateau (up to 1.4 V), high energy density (578.3 Wh kgPDSe -1), and ultralong lifespan (12 000 cycles) at 10 A g-1, far outperforming conventional bipolar OCMs. This work sheds new light on conversion-type active site engineering for high-voltage/capacity bipolar OCMs towards high-energy AZBs.

5.
Small ; 20(2): e2305217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661581

RESUMEN

Graphene-based materials (GBMs) possess a unique set of properties including tunable interlayer channels, high specific surface area, and good electrical conductivity characteristics, making it a promising material of choice for making electrode in rechargeable batteries. Lithium-ion batteries (LIBs) currently dominate the commercial rechargeable battery market, but their further development has been hampered by limited lithium resources, high lithium costs, and organic electrolyte safety concerns. From the performance, safety, and cost aspects, zinc-based rechargeable batteries have become a promising alternative of rechargeable batteries. This review highlights recent advancements and development of a variety of graphene derivative-based materials and its composites, with a focus on their potential applications in rechargeable batteries such as LIBs, zinc-air batteries (ZABs), zinc-ion batteries (ZIBs), and zinc-iodine batteries (Zn-I2 Bs). Finally, there is an outlook on the challenges and future directions of this great potential research field.

6.
Small Methods ; : e2301081, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072584

RESUMEN

Mild aqueous Zn batteries (AZBs) generally suffer a low-voltage/energy dilemma, which compromises their competitiveness for large-scale energy storage. Pushing Zn anode potential downshift is an admissible yet underappreciated approach for high-voltage/energy AZBs. Herein, with a mild hybrid electrolyte containing in situ-derived diluted strongly-coordinated Zn2+ -cosolvent pairs, a considerable Zn anode potential downshift is initially achieved for high-voltage Zn-based hybrid batteries. The chosen butylpyridine cosolvent not only strongly coordinates Zn2+ ions but also acts as a hydrogen-bond end-capping agent to inhibit hydrogen evolution reaction (HER). The electrolyte environment with hetero-solvation-diluted strongly-coordinated Zn2+ -cosolvent pairs remarkably lowers Zn2+ activity, responsible for the Zn electrode potential downshift (-0.330 V vs Zn), confirming to modified Nernst law (ΔE = R T n F $\frac{{RT}}{{nF}}$ ln[a(Zn2 + )/a(coordinated solvent)]). With the diluted Zn2+ -containing hybrid electrolyte, the Zn//Zn symmetric cell in the hybrid electrolyte shows a long lifespan over 1270 h at a stripping/plating capacity of 0.4 mA h cm-2 . Compared with in common hybrid electrolytes, the as-assembled Zn-MnO2 hybrid battery delivers a ca. 0.278 V enhanced voltage plateau (1.57 V) and a long-term cyclability of over 736 cycles. This work opens a new avenue toward Zn anode potential downshift for high-voltage AZBs, which can extend to other mild metal batteries.

7.
ACS Nano ; 17(22): 23207-23219, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963092

RESUMEN

Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I3- attack. Moreover, the as-constructed Zn2+-enriched layer substantially facilitate rapid Zn2+ migration through the NH2-Zn2+-NH2 binding/dissociation mode of CCS molecule chain. Consequently, the large-format Zn symmetry cell (9 cm2) with a Zn-CCS electrode demonstrates excellent cycling stability over 1100 h without bulging. When coupled with an I2 cathode, the assembled Zn-I2 multilayer pouch cell displays an exceptionally high capacity of 140 mAh and superior long-term cycle performance of 400 cycles. This work provides a universal strategy to prepare large-scale production and high-performance polymer crowding layer for metal anode-based battery, analogous outcomes were veritably observed on other metals (Al, Cu, Sn).

8.
Angew Chem Int Ed Engl ; 62(44): e202311032, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37691598

RESUMEN

The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn2+ -conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm-2 , presenting a record-high cumulative capacity up to 45 Ah cm-2 . The superiority of the formulated electrolyte is further demonstrated in the Zn||MnO2 and Zn||NaV3 O8 full batteries, even when tested under harsh conditions (limited Zn supply (N/P≈3), 2500 cycles). This work brings inspiration for developing fast-charging Zn batteries toward grid-scale storage of renewable energy sources.

9.
Chem Commun (Camb) ; 59(73): 10980-10983, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37615034

RESUMEN

A facile, universal surface engineering strategy is proposed to address the volume expansion and slow kinetic issues encountered by SiOx/C anodes. A B-/F-enriched buffering interphase is introduced onto SiOx/C by thermal treatment of pre-adsorbed lithium salts at 400 °C. The as-prepared anode integrates both high-rate performance and long-term cycling durability.

10.
Adv Mater ; 35(15): e2208630, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739482

RESUMEN

Aqueous zinc-metal batteries have attracted extensive attention due to their outstanding merits of high safety and low cost. However, the intrinsic thermodynamic instability of zinc in aqueous electrolyte inevitably results in hydrogen evolution, and the consequent generation of OH- at the interface will dramatically exacerbate the formation of dead zinc and dendrites. Herein, a dynamically interfacial pH-buffering strategy implemented by N-methylimidazole (NMI) additive is proposed to remove the detrimental OH- at zinc/electrolyte interface in real-time, thus eliminating the accumulation of by-products fundamentally. Electrochemical quartz crystal microbalance and molecular dynamics simulation results reveal the existence of an interfacial absorption layer assembled by NMI and protonated NMI (NMIH+ ), which acts as an ion pump for replenishing the interface with protons constantly. Moreover, an in situ interfacial pH detection method with micro-sized spatial resolution based on the ultra-microelectrode technology is developed to probe the pH evolution in diffusion layer, confirming the stabilized interfacial chemical environment in NMI-containing electrolyte. Accordingly, with the existence of NMI, an excellent cumulative plating capacity of 4.2 Ah cm-2 and ultrahigh Coulombic efficiency of 99.74% are realized for zinc electrodes. Meanwhile, the NMI/NMIH+ buffer additive can accelerate the dissolution/deposition process of MnO2 /Mn2+ on the cathode, leading to enhanced cycling capacity.

11.
Angew Chem Int Ed Engl ; 62(16): e202217945, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36789448

RESUMEN

Aqueous rechargeable Mg batteries (ARMBs) usually fail from severe anode passivation, alternatively, executing quasi-underpotential Mg plating/stripping chemistry (UPMC) on a proper heterogeneous metal substrate is a crucial remedy. Herein, a stable UPMC on Zn substrate is initially achieved in new hydrated eutectic electrolytes (HEEs), delivering an ultralow UPMC overpotential and high energy/voltage plateau of ARMBs. The unique eutectic property remarkably expands the lower limit of electrochemical stability window (ESW) of HEEs and undermines the competition between hydrogen evolution/corrosion reactions and UPMC, enabling a reversible UPMC. The UPMC is carefully revealed by multiple characterizations, which shows a low overpotential of 50 mV at 0.1 mA cm-2 over 550 h. With sulfonic acid-doped polyaniline (SPANI) cathodes, UPMC-based full cells show high energy/power densities of 168.6 Wh kg-1 /2.1 kWh kg-1 and voltage plateau of 1.3 V, far overwhelming conventional aqueous systems.

12.
Angew Chem Int Ed Engl ; 62(5): e202215385, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36437231

RESUMEN

The anode-cathode interplay is an important but rarely considered factor that initiates the degradation of aqueous zinc ion batteries (AZIBs). Herein, to address the limited cyclability issue of V-based AZIBs, Al2 (SO4 )3 is proposed as decent electrolyte additive to manipulate OH- -mediated cross-communication between Zn anode and NaV3 O8 ⋅ 1.5H2 O (NVO) cathode. The hydrolysis of Al3+ creates a pH≈0.9 strong acidic environment, which unexpectedly prolongs the anode lifespan from 200 to 1000 h. Such impressive improvement is assigned to the alleviation of interfacial OH- accumulation by Al3+ adsorption and solid electrolyte interphase formation. Accordingly, the strongly acidified electrolyte, associated with the sedated crossover of anodic OH- toward NVO, remarkably mitigate its undesired dissolution and phase transition. The interrupted OH- -mediated communication between the two electrodes endows Zn||NVO batteries with superb cycling stability, at both low and high scan rates.

13.
Nano Lett ; 22(22): 9062-9070, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36331177

RESUMEN

Severe Zn dendrite growth and side reactions greatly limit the application of aqueous zinc-ion batteries. Herein, we design a layer of polyionic liquid (PCAVImBr) film with a tunable pore size and charge density on the Zn anode to endow homogenized distribution of an electronic field, acerated Zn2+ permeation, and inhabitation of water entry. Such an optimal combination is achieved via a polymerization induced phase separation strategy, where the enhanced cross-linking density arrests the phase separation in a shallow depth and vice versa. Furthermore, the Zn@PCAVImBr electrode has good plating/stripping reversibility, which retains a 99.6% CE efficiency after 3000 cycles. The symmetric cells can achieve a cycle life of more than 2400 h at different current densities. It is worth mentioning that the NVO//Zn@PCAVImBr full cell can still reach a 91.2% capacity retention after nearly 4000 cycles at a high current of 10 A g-1, and provides new insights for the future research of zinc-ion battery anodes.


Asunto(s)
Líquidos Iónicos , Polimerizacion , Electrónica , Zinc
14.
ACS Appl Mater Interfaces ; 14(37): 42048-42056, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36070445

RESUMEN

Sodium-ion batteries (SIBs) have become an important supplementation to lithium-ion batteries. Unfortunately, the low capacity and inferior low-temperature performance of traditional hard carbon led to limited energy density and a range of applications of SIBs. Herein, we present high-performance SIBs via embedding FePS3 in graphitized porous N-doped carbon (FPS/GPNC) using coordination polymerization reaction. Such unique graphitized pores are in situ-constructed by the self-aggregation of Fe nanoparticles with high surface energy at high temperatures, which affords a three-dimensional open channel and a graphitized conductive network for fast transportation of Na+ and electrons. Moreover, an ingenious buffer barrier composed of graphitized pores is constructed for FePS3 to withstand volume fluctuation during cycling. Consequently, a superior capacity of 354.2 mAh g-1 is delivered even when the rate increases to 50 A g-1. The impressing cycling lifespan up to 4700 cycles is achieved at 30 A g-1 with excellent retention of 84.4%. Interestingly, the low-temperature performance (-20 °C) of FePS3 is explored for the first time, and excellent stability (502.6 mAh g-1 maintained after 100 cycles at 0.1 A g-1) is obtained, indicating huge potential of practical application. This work provides insights into designing high-rate, high-capacity, and low-temperature SIBs.

15.
Chemistry ; 28(49): e202201151, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35695712

RESUMEN

Lithium metal batteries (LMBs) have attracted extensive attention owing to their high energy density. However, the uncontrolled volume changes and serious dendrite growth of the Li metal anode have hindered their commercialization. Herein, a three-dimensional Cu foam decorated with Au nanoparticles and conformal graphene layer was designed to tune the Li plating/stripping behaviors. The 3D-Cu conductive host anchored by lithiophilic Au nanoparticles can effectively alleviate the volume expansion caused by the continuous plating/stripping of Li and reduce the nucleation energy barrier. Notably, the conductive graphene not only facilitates the transfer of electrons, but also acts as an ionic rectifier, thereby avoiding the aggregation of local current density and Li+ ions around Au nanoparticles and enabling the uniform Li+ flux. As a result, the G-Au@3D-Cu/Li anode ensures the non-dendritic and homogeneous Li+ plating/stripping. Electrochemical results show that the symmetric G-Au@3D-Cu/Li cell delivers a low voltage hysteresis of 110 mV after 1000 h at 1 mA cm-2 . Matched with a layered LiNi0.6 Co0.2 Mn0.2 O2 cathode, the NCM622||G-Au@3D-Cu/Li full cell exhibits a long cycle life of 2000 cycles and an ultra-low capacity decay rate (0.01 % per cycle).

16.
Nanomicro Lett ; 14(1): 106, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35426577

RESUMEN

Carbon nanofibers films are typical flexible electrode in the field of energy storage, but their application in Zinc-ion hybrid capacitors (ZIHCs) is limited by the low energy density due to the lack of active adsorption sites. In this work, an in-situ exfoliation strategy is reported to modulate the chemisorption sites of carbon nanofibers by high pyridine/pyrrole nitrogen doping and carbonyl functionalization. The experimental results and theoretical calculations indicate that the highly electronegative pyridine/pyrrole nitrogen dopants can not only greatly reduce the binding energy between carbonyl group and Zn2+ by inducing charge delocalization of the carbonyl group, but also promote the adsorption of Zn2+ by bonding with the carbonyl group to form N-Zn-O bond. Benefit from the multiple highly active chemisorption sites generated by the synergy between carbonyl groups and pyridine/pyrrole nitrogen atoms, the resulting carbon nanofibers film cathode displays a high energy density, an ultralong-term lifespan, and excellent capacity reservation under commercial mass loading (14.45 mg cm‒2). Particularly, the cathodes can also operate stably in flexible or quasi-solid devices, indicating its application potential in flexible electronic products. This work established a universal method to solve the bottleneck problem of insufficient active adsorption sites of carbon-based ZIHCs.Imoproved should be changed into Improved.

17.
Adv Sci (Weinh) ; 9(16): e2200498, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35347886

RESUMEN

Layered transition-metal (TM) oxides are ideal hosts for Li+ charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium-ion batteries. Herein a Ti/Mg co-doping strategy for a model P2-Na2/3 Ni1/3 Mn2/3 O2 cathode material is put forward to activate charge compensation through highly hybridized O2 p TM3 d covalent bonds. In this way, the interlayer OO electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2-O2 interlayer contraction into a moderate solid-solution-type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.

18.
ACS Appl Mater Interfaces ; 14(8): 10489-10497, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35170937

RESUMEN

Manganese oxide is a promising cathode material for rechargeable aqueous zinc-ion batteries (ZIBs). However, the low electronic conductivity and unstable structure evolution of manganese materials often result in poor rate performance and rapid capacity decay. Herein, we design N-doped Na2Mn3O7 (N-NMO) by combining sodium preintercalation and nitridation treatment strategies to stabilize the crystalline structure and reaction interface. Sodium preintercalation not only enlarges the interlayer distance for fast Zn2+ ion diffusion but also serves as a robust pillar to stabilize the crystalline structure during cycling. Meanwhile, the nitridation layer on the surface of Na2Mn3O7 particles is favorable for enhancing the electronic conductivity and inhibiting the cathode dissolution issue during repeated cycling. Consequently, the as-prepared N-NMO exhibits high reversible capacity (300 mAh g-1 at 0.2 A g-1), good rate capability (100 mAh g-1 at 10 A g-1), and outstanding long-term cycling stability (high capacity retention of 78.9% after 550 cycles at 2 A g-1). Considering the facile and simple synthesizing methods, the synergistic engineering of the interlayer structure and interface is expected to provide new opportunities for the development of high-performance Mn-based cathode materials for aqueous ZIBs.

19.
Small ; 18(13): e2107667, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35098643

RESUMEN

Developing highly efficient bifunctional catalysts for the oxygen reduction and oxygen evolution reaction (ORR/OER) can open possibilities for future zinc air batteries (ZABs). Herein, cost-effective and highly conductive few-layer ferric and nickel chloride co-intercalated graphite intercalation compounds (FeCl3 -NiCl2 -GIC) are designed as bifunctional oxygen catalysts for ZAB. The optimized few-layer FeCl3 -NiCl2 -GIC catalyst exhibits a small overpotential of 276 mV at 10 mA cm-2 for the OER and achieves a high onset potential of 0.89 V for the ORR. The theoretical analysis demonstrates the electron-rich state on the carbon layers of FeCl3 -NiCl2 -GIC during the catalytic process favors the kinetics of electron transfer and lowers the absorption energy barriers for intermediates. Impressively, the ZAB assembled with few-layer FeCl3 -NiCl2 -GIC catalyst displays a 160 h cycling stability and a high energy efficiency of 72.6%. This work also suggests the possibility of utilizing layer electronic structure regulation on graphite intercalation compounds as effective bifunctional catalysts for ZABs.

20.
Adv Sci (Weinh) ; 9(6): e2104530, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34962107

RESUMEN

Implementing fast-charging lithium-ion batteries (LIBs) is severely hindered by the issues of Li plating and poor rate capability for conventional graphite anode. Wadsley-Roth phase TiNb2 O7 is regarded as a promising anode candidate to satisfy the requirements of fast-charging LIBs. However, the unsatisfactory electrochemical kinetics resulting from sluggish ion and electron transfer still limit its wide applications. Herein, an effective strategy is proposed to synchronously improve the ion and electron transfer of TiNb2 O7 by incorporation of oxygen vacancy and N-doped graphene matrix (TNO- x @N-G), which is designed by combination of solution-combustion and electrostatic self-assembly approach. Theoretical calculations demonstrate that Li+ intercalation gives rise to the semi-metallic characteristics of lithiated phases (Liy TNO- x ), leading to the self-accelerated electron transport. Moreover, in situ X-ray diffraction and Raman measurements reveal the highly reversible structural evolution of the TNO- x @N-G during cycling. Consequently, the TNO- x @N-G delivers a higher reversible capacity of 199.0 mAh g-1 and a higher capacity retention of 86.5% than those of pristine TNO (155.8 mAh g-1 , 59.4%) at 10 C after 2000 cycles. Importantly, various electrochemical devices including lithium-ion full battery and hybrid lithium-ion capacitor by using the TNO- x @N-G anode exhibit excellent rate capability and cycling stability, verifying its potential in practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...