Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37299282

RESUMEN

In this study, the variation of fatigue stiffness, fatigue life, and residual strength, as well as the macroscopic damage initiation, expansion, and fracture of CFRP (carbon fiber reinforced polymer) rods in bending-anchored CFRP cable, were investigated experimentally to verify the anchoring performance of the bending anchoring system and evaluate the additional shear effect caused by bending anchoring. Additionally, the acoustic emission technique was used to monitor the progression of critical microscopic damage to CFRP rods in a bending anchoring system, which is closely related to the compression-shear fracture of CFRP rods within the anchor. The experimental results indicate that after the fatigue cycles of two million, the residual strength retention rate of CFRP rod was as high as 95.1% and 76.7% under the stress amplitudes of 500 MPa and 600 MPa, indicating good fatigue resistance. Moreover, the bending-anchored CFRP cable could withstand 2 million cycles of fatigue loading with a maximum stress of 0.4 σult and an amplitude of 500 MPa without obvious fatigue damage. Moreover, under more severe fatigue-loading conditions, it can be found that fiber splitting in CFRP rods in the free section of cable and compression-shear fracture of CFRP rods are the predominant macroscopic damage modes, and the spatial distribution of macroscopic fatigue damage of CFRP rods reveals that the additional shear effect has become the determining factor in the fatigue resistance of the cable. This study demonstrates the good fatigue-bearing capacity of CFRP cable with a bending anchoring system, and the findings can be used for the optimization of the bending anchoring system to further enhance its fatigue resistance, which further promotes the application and development of CFRP cable and bending anchoring system in bridge structures.

2.
ACS Appl Mater Interfaces ; 15(21): 26000-26015, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37192267

RESUMEN

Superhydrophobic coatings play a crucial role in self-cleaning and anti-icing infrastructure areas under harsh service environments such as very low temperature, strong wind, and sand impact. In the present study, an environment-friendly and self-adhesive superhydrophobic polydopamine coating inspired by mussels had been successfully developed and its growth process was accurately regulated by formula and reaction ratio optimization. The preparation characteristic and reaction mechanism, surface wetting behavior, multi-angle mechanical stability, anti-icing, and self-cleaning tests were systematically investigated. The results showed that the superhydrophobic coating achieved an ideal static contact angle of 162.7° and a roll-off angle of 5.5° through the proposed self-assembly technique in an ethanol-water solvent. This was due to the coupling effect of constructing a hierarchical roughness structure on the coating surface and reducing its surface energy, which had been well documented by the surface morphology characteristic and chemical structure analysis. The as-prepared coating's self-mechanical performances (tensile strength/shear holding power) and surface wear resistance (sand impact/sandpaper abrasion) behaviors were tested, and results showed tight internal compactness and excellent mechanical robustness, respectively. Furthermore, the 180° tape-peeling on 100 cycles and pull-off adhesion tests indicated that the above coating had significant mechanical stability and an increased percentage (57.4%) of interface bonding strength (27.4 MPa) with steel substrate compared to pure epoxy/steel. This was attributed to the metal chelating capacity between polydopamine catechol moieties and steel. Finally, the superhydrophobic coating had obvious self-cleaning properties by using graphite powder as a contaminant. Additionally, the coating had a higher supercool pressure and displayed much-reduced icing temperature, a longer icing delay time, and an extremely low and stable ice adhesion strength (0.115 MPa) owing to the extreme water-repellence and mechanical durability.

3.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890728

RESUMEN

The long-term degradation of epoxy as the matrix and adhesive serviced in harsh environments plays a key role in engineering applications. Understanding how to improve the toughness and durability of epoxy through reasonable material replacement and design is significant to prolong the service life of engineering structures. In the present paper, thermoplastic polypropylene and thermosetting epoxy were exposed in a coupling environment of elevated temperature, water immersion and sustained bending loading. The evolutions of mechanical and thermal properties were further analyzed and compared. Long-term life prediction was conducted to evaluate the corrosive resistances of polypropylene and epoxy. It can be found that polypropylene has better hydrophobic behavior compared to epoxy. At 80 °C, the ratios of the diffusion coefficient and saturated water uptake between the two matrices were 114.4 and 2.94. At the longest immersion time of 90 days, the degradation percentages of tensile strength were 4.7% (40 °C), 7.5% (60 °C) and 8.8% (80 °C), respectively, which had the higher strength retention (>90%). The maximum strength increase in the multiples of polypropylene/epoxy and polypropylene/polyurethane was 1.95 and 1.75, respectively. The bending loading led to a maximum increase in tensile strength (~1.47%) owing to the oxygen isolation effect. The degradation mechanism was attributed to the active functional groups from the production process reacting with oxygen, resulting in the fracture of the local chain segment. By comparison, water molecules reacted with the hydroxyl groups or interrupted the intermolecular Van der Waals force/hydrogen bond of the epoxy, resulting in irreversible hydrolysis and property degradation. Through the comparison, it can be found that polypropylene and its composites have outstanding properties compared to epoxy, which can make them achieve great application prospects in engineering applications when considering a complex service environment.

4.
Polymers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683918

RESUMEN

The choice of a manufacturing process, raw materials, and process parameters affects the quality of produced pre-consolidated tapes used in thermoplastic pultrusion. In this study, we used two types of pre-consolidated GF/PP tapes-commercially available (ApATeCh-Tape Company, Moscow, Russia) and inhouse-made tapes produced from commingled yarns (Jushi Holdings Inc., Boca Raton, FL, USA)-to produce pultruded thermoplastic Ø 6 mm bars and 75 mm × 3.5 mm flat laminates. Flat laminates produced from inhouse-made pre-consolidated tapes demonstrated higher flexural, tensile, and apparent interlaminar shear strength compared to laminates produced from commercial pre-consolidated tapes by as much as 106%, 6.4%, and 27.6%, respectively. Differences in pre-consolidated tape manufacturing methods determine the differences in glass fiber impregnation and, thus, differences in the mechanical properties of corresponding pultruded composites. The use of commingled yarns (consisting of matrix and glass fibers properly intermingled over the whole length of prepreg material) makes it possible to achieve a more uniform impregnation of inhouse-made pre-consolidated tapes and to prevent formation of un-impregnated regions and matrix cracks within the center portion of the fiber bundles, which were observed in the case of commercial pre-consolidated tapes. The proposed method of producing pre-consolidated tapes made it possible to obtain pultruded composite laminates with larger cross sections than their counterparts described in the literature, featuring better mechanical properties compared to those produced from commercial pre-consolidated tapes.

5.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335418

RESUMEN

When the thermoplastic composites reach the service limits during the service, the recovery and utilization are the key concerns. Meanwhile, the improvement of strength, toughness and durability of epoxy resin is the effective method to prolong the service life of materials and structures. In the present paper, three kinds of thermoplastic resins (polypropylene-PP, polyamide 6-PA6 and polyether-ether-ketone-PEEK) and composites (carbon fiber-PEEK, glass fiber-PA6 and glass fiber-PP) were adopted as the fillers to reinforce and toughen the epoxy resin (Ts). The mechanical, thermal and microscopic analysis were conducted to reveal the performance improvement mechanism of Ts. It can be found that adding thermoplastic resin and composite fillers at the low mass ratio of 0.5~1.0% brought about the maximum improvement of tensile strength (7~15%), flexural strength (7~15%) and shear strength (20~30%) of Ts resin. The improvement mechanism was because the addition of thermoplastic fillers can prolong the cracking path and delay the failure process through the load bearing of fiber, energy absorption of thermoplastic resin and superior interface bonding. In addition, the thermoplastic composite had better enhancement effect on the mechanical/thermal properties of Ts resin compared to thermoplastic resin. When the mass ratio was increased to 2.0~3.0%, the agglomeration and stress concentration of thermoplastic filler in Ts resin appeared, leading to the decrease of mechanical and thermal properties. The optimal addition ratios of thermoplastic resin were 0.5~1.0% (PEEK), 1.0~2.0% (PA6) and 0.5~1.0% (PP) to obtain the desirable property improvement. In contrast, the optimal mass ratios of three kinds of composite were determined to be 0.5~1.0%. Application prospect analysis indicated adding the thermoplastic resin and composite fillers to Ts resin can promote the recycling and reutilization of thermoplastic composites and improve the performance of Ts resin, which can be used as the resin matrix, interface adhesive and anti-corrosion coating.

6.
Materials (Basel) ; 15(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35207949

RESUMEN

Affected by ambient oxygen and thermal diffusion mechanism, the radial structural distribution of polyacrylonitrile (PAN) fiber during the pre-oxidation process will be inherited to the carbon fiber, which had a remarkable effect on the mechanical properties of carbon fiber. It is important to understand the evolution mechanism of radial structure evolution of PAN fiber during the pre-oxidation process to manufacture the high-performance carbon fiber. In this paper, a series of fine denier model fibers were prepared by adjusting the oxygen concentration to describe the structural characteristics at different radial regions of pre-oxidized fibers. The evolution mechanism of the radial structure of pre-oxidized fiber, with the increase of heat treatment temperature, was studied by the methods of optical microscope, C13 nuclear magnetic resonance (13C-NMR), and thermogravimetric analyzer (TGA). The results showed that along the radial direction of pre-oxidized fiber from skin to core layer, the degree of cyclization changed little while the dehydrogenation and oxygen-containing structure gradually decreased. Specifically, the oxygen-containing functional groups in the core decreased to the lowest level or even disappeared. A moderate increase of temperature in the initial and middle pre-oxidation processes could effectively promote the formation of cyclized structure and stabilize cross-linked ladder structure in the skin region of the fiber. With it, the thermal stability of obtained pre-oxidation fiber was improved.

7.
Polymers (Basel) ; 13(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201026

RESUMEN

The durability of fiber-reinforced polymer (FRP) composites is significantly dependent on the structures and properties of the resin matrix. In the present paper, the effects of physical or chemical interactions between the molecular chain of the epoxy resin matrix and water molecules or alkaline groups on the water absorption, mechanical structures, and microstructures of epoxy resin samples were studied experimentally. The results showed that the water uptake curves of the epoxy resin immersed in water and an alkali solution over time presented a three-stage variation. At different immersion stages, the water uptake behavior of the resin showed unique characteristics owing to the coupling effects of the solution concentration gradient diffusion, molecular hydrolysis reaction, and molecular segment movement. In comparison with the water immersion, the alkali solution environment promoted the hydrolysis reaction of the epoxy resin molecular chain. After the immersion in water or the alkali solution for one month, the water uptake of the resin was close to saturate, and the viscoelasticity was observed to decrease significantly. The micropore and free volume space on the surface and in the interior of the resin gradually increased, while the original large-scale free volume space decreased. The tensile strength decreased to the lowest point after the immersion in water and the alkali solution for one month, and the decrease percentages at 20 °C and 60 °C water or 60 °C alkali solution were 24%, 28%, and 22%, respectively. Afterward, the tensile strength recovered with the further extension of immersion time. In addition, it can be found that the effect of the alkali solution and water on the tensile strength of the epoxy resin was basically the same.

8.
Materials (Basel) ; 14(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208372

RESUMEN

The thermal stabilization process of polyacrylonitrile (PAN) precursor fiber was the key step to prepare high-performance carbon fiber. During the thermal stabilization process, the aggregation structure and the reactivity of molecular chains have significant effects on the microstructures and mechanical properties of carbon fiber. In the present paper, the effects of the orientation structure of PAN precursor fiber on the thermal stabilization reaction and the mechanical properties of carbon fiber were experimentally studied. Using multi-dimensional structural and mechanical properties tests, such as XRD, DSC, 13C NMR and Instron machine testing, the crystalline and skeleton structure, exothermic behavior, and tensile properties of PAN precursor fiber with different orientations in the process of thermal stabilization were characterized to reveal the relationship between microstructure evolution and tensile properties. The results showed that the orientation structure of PAN precursor fiber had an obvious effect on the thermal stabilization process and the tensile stress-strain characteristic. When the heat treatment temperature was lower than 200 °C, the crystallinity and crystallite size of PAN fibers with higher orientation degrees increased significantly. After sufficient thermal stabilization, the original PAN precursor fiber with a higher orientation degree could form more aromatic lamellar structures and showed better regularity. Furthermore, the yield strength and initial modulus of the fibers with a higher orientation degree increased due to the formation of more aromatic rings. The maximum increase in the percentages of yield strength and tensile modulus of the PAN fibers were achieved when the heat-treated temperature was 200 °C, and the percentage values were 138.4% and 158.7% compared to the precursor without heat-treatment. In addition, the elongation at break of the fibers with a higher orientation degree was also relatively larger.

9.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067135

RESUMEN

The superior mechanical properties of multi-walled carbon nanotubes (MWCNTs) play a significant role in the improvement of the mechanical and thermal stability of an epoxy matrix. However, the agglomeration of carbon nanotubes (CNTs) in the epoxy is a common challenge and should be resolved to achieve the desired enhancement effect. The present paper investigated the thermal, mechanical, and water uptake properties of epoxy nanocomposites with surfactant-modified MWCNTs. The nanocomposites were prepared through the incorporation of different weight concentrations of MWCNTs into the epoxy matrix. Comparative analysis of neat epoxy and epoxy/CNT nanocomposites were conducted through thermal, mechanical, microscopic, and water uptake tests to reveal the improvement mechanism. The homogenous distribution of the CNTs in the epoxy was achieved by wrapping the surfactant onto the CNTs. The addition of surfactant-modified CNTs into the epoxy caused an obvious increase in the mechanical and thermal properties. This improvement mechanism could be attributed to the uniform dispersion of the CNTs in the epoxy matrix reducing the free volume between the polymer chains and restricting the chain segmental mobility, leading to strong interfacial bonding and an efficient load transfer capability between the CNTs and the epoxy matrix. However, the mechanical and thermal properties of the epoxy/CNT nanocomposite decreased owing to the agglomeration effect when the concentration of the CNTs exceeded the optimal percentage of 1.5%. Additionally, the CNTs could impart a reduction in the wettability of the surface of the epoxy/CNT nanocomposite, leading to the increase in the contact angle and a reduction in the water uptake, which was significant to improve the durability of the epoxy. Moreover, the higher weight concentration (2%) of the CNTs showed a greater water uptake owing to agglomeration, which may cause the formation of plenty of microcracks and microvoids in the nanocomposite.

10.
Polymers (Basel) ; 13(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401736

RESUMEN

Application of glass- or carbon-fiber-reinforced polymer (GFRP/CFRP) bars makes the direct use of seawater and sea sand concrete (SWSSC) in construction feasible, which is of high interest in order to conserve the limited resources of fresh water and river sand. The present paper performed the life cycle assessment (LCA) of constructing three kinds of beams (GFRP/CFRP bar-reinforced SWSSC beams, and steel bar-reinforced common concrete (SRC) beam) in marine environments to show the environmental benefits of using FRP bar-reinforced SWSSC beams in marine environments. According to ISO 14040 and ISO 14044, stages including production, transportation, construction, use and end-of-life are within the LCA's boundary. The ReCiPe method and eight main environmental impact categories were used to characterize the environmental impacts of those beams. LCA results indicate that one cubic meter SWSSC possesses much lower environmental impacts in terms of all eight categories compared with common concrete with the same volume when used in marine environments, with reduction rates from 26.3% to 48.6%. When the two transportation distances were set as 50 and 20 km and without considering the difference in service life, compared to SRC beam, GFRP-SWSSC beam performs better in six categories and CFRP-SWSSC beam performs better in four categories. When considering increased transportation distance and the higher durability performance, the advantageous categories for GFRP-SWSSC and CFRP-SWSSC beams increase to seven and six, respectively. The environmental impacts of all the three beams are mainly affected by the production stages.

11.
Adv Sci (Weinh) ; 7(10): 2000348, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440489

RESUMEN

Human-computer interfaces, smart glasses, touch screens, and some electronic skins require highly transparent and flexible pressure-sensing elements. Flexible pressure sensors often apply a microstructured or porous active material to improve their sensitivity and response speed. However, the microstructures or small pores will result in high haze and low transparency of the device, and thus it is challenging to balance the sensitivity and transparency simultaneously in flexible pressure sensors or electronic skins. Here, for a capacitive-type sensor that consists of a porous polyvinylidene fluoride (PVDF) film sandwiched between two transparent electrodes, the challenge is addressed by filling the pores with ionic liquid that has the same refractive index with PVDF, and the transmittance of the film dramatically boosts from 0 to 94.8% in the visible range. Apart from optical matching, the ionic liquid also significantly improves the signal intensity as well as the sensitivity due to the formation of an electric double layer at the dielectric-electrode interfaces, and improves the toughness and stretchability of the active material benefiting from a plasticization effect. Such transparent and flexible sensors will be useful in smart windows, invisible bands, and so forth.

12.
Materials (Basel) ; 12(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832261

RESUMEN

In the present article, the degradation of the tensile properties of polyacrylonitrile (PAN)-based carbon fibers at elevated temperatures in air was studied experimentally and modeled. The tensile properties, mass loss, surface morphology, and elements and functional groups of carbon fibers were characterized. It can be concluded that the tensile strength and modulus of the carbon fibers decreased remarkably when the exposure temperature exceeded 500 °C. Oxidation at elevated temperatures etched the carbon layer from the skin to the core of the carbon fibers, leading to mass loss. According to the rule of mixtures, an exponential decay model was put forward to describe the degradation behavior of tensile modulus exposed to different temperatures and times. The thickness of the outer layer (Touter) of carbon fibers was obtained to be 0.818 µm. The ultimate exposure temperature was predicted to be 699.4 °C for 30 min, and the ultimate exposure time was 13.2 h at 500 °C. Furthermore, the time⁻temperature equivalence equation of tensile modulus was deduced. Through the introduction of the normalized oxidation degree, a degradation model of the tensile modulus at any exposure temperature (~800 °C) and time (~800 min) was also proposed. From the elastic mechanics theory for anisotropic solids, the degradation model of tensile strength exposed to elevated temperature was confirmed. It can be observed that the proposed model had good agreement with the experimental results.

13.
Polymers (Basel) ; 10(6)2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30966662

RESUMEN

A pultruded unidirectional carbon/glass reinforced epoxy hybrid FRP rod with 19 mm of diameter was developed for a sucker rod and lifting oil wells. The rod possesses a 12-mm diameter carbon fiber core and a 3.5-mm thick outer shell. The rod was exposed to high-temperature immersion in water under hydraulic pressure. To understand the long-term service performance of the rod, immersions in water at 20 °C, 40 °C, or 60 °C under 20 MPa of pressure for 1 year were conducted on the water uptake and distribution in the rod. The water uptake data were fitted by Fickian diffusion law, and the diffusion coefficient and the maximum water uptake were derived. Water distribution in the rod as a function of the immersion time, temperature, and hydraulic pressure was analyzed theoretically. This study revealed the accelerating effects of the elevated temperatures and the hydraulic pressure on the water diffusion in the hybrid rod.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...