Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Ultrason Sonochem ; 108: 106947, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38878713

RESUMEN

In this work study, a comparative analysis was undertaken to investigate investigation into the cavitation erosion (CE) and corrosion behavior of laser powder bed fusion (LPBF) TC4 and as-cast TC4 in 0.6 mol/L NaCl solution. Relevant results indicated that LPBF TC4 revealed a rectangular checkerboard-like pattern with a more refined grain size compared to as-cast TC4. Meanwhile, LPBF TC4 surpassed its as-cast counterpart in CE resistance, demonstrating approximately 2.25 times lower cumulative mass loss after 8 h CE. The corrosion potential under alternating CE and quiescence conditions demonstrated that both LPBF TC4 and as-cast TC4 underwent a rapid potential decrease at the initial stages of CE, while a consistent negative shift in corrosion potential was observed with the continuously increasing CE time, indicative of a gradual decline in repassivation ability. The initial surge in corrosion potential during the early CE stages was primarily attributed to accelerated oxygen transfer. As CE progressed, the significant reduction in corrosion potential for both LPBF TC4 and as-cast TC4 was attributed to the breakdown of the passive film. The refined and uniform microstructure in LPBF TC4 effectively suppresses both crack formation and propagation, underscoring the potential of LPBF technology in enhancing the CE resistance of titanium alloys. This work can provide important insights into developing high-quality, reliable, and sustainable CE-resistant materials via LPBF technology.

2.
Fa Yi Xue Za Zhi ; 40(2): 118-127, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38847025

RESUMEN

In the study of age estimation in living individuals, a lot of data needs to be analyzed by mathematical statistics, and reasonable medical statistical methods play an important role in data design and analysis. The selection of accurate and appropriate statistical methods is one of the key factors affecting the quality of research results. This paper reviews the principles and applicable principles of the commonly used medical statistical methods such as descriptive statistics, difference analysis, consistency test and multivariate statistical analysis, as well as machine learning methods such as shallow learning and deep learning in the age estimation research of living individuals, and summarizes the relevance and application prospects between medical statistical methods and machine learning methods. This paper aims to provide technical guidance for the age estimation research of living individuals to obtain more scientific and accurate results.


Asunto(s)
Aprendizaje Automático , Humanos , Determinación de la Edad por el Esqueleto/métodos , Análisis Multivariante , Determinación de la Edad por los Dientes/métodos
3.
mSystems ; : e0039924, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934545

RESUMEN

The skin microbiome plays a pivotal role in human health by providing protective and functional benefits. Furthermore, its inherent stability and individual specificity present novel forensic applications. These aspects have sparked considerable research enthusiasm among scholars across various fields. However, the selection of specific 16S rRNA hypervariable regions for skin microbiome studies is not standardized and should be validated through extensive research tailored to different research objectives and targeted bacterial taxa. Notably, third-generation sequencing (TGS) technology leverages the full discriminatory power of the 16S gene and enables more detailed and accurate microbial community analyses. Here, we conducted full-length 16S sequencing of 141 skin microbiota samples from multiple human anatomical sites using the PacBio platform. Based on this data, we generated derived 16S sub-region data through an in silico experiment. Comparisons between the 16S full-length and the derived variable region data revealed that the former can provide superior taxonomic resolution. However, even with full 16S gene sequencing, limitations arise in achieving 100% taxonomic resolution at the species level for skin samples. Additionally, the capability to resolve high-abundance bacteria (TOP30) at the genus level remains generally consistent across different 16S variable regions. Furthermore, the V1-V3 region offers a resolution comparable with that of full-length 16S sequences, in comparison to other hypervariable regions studied. In summary, while acknowledging the benefits of full-length 16S gene analysis, we propose the targeting of specific sub-regions as a practical choice for skin microbial research, especially when balancing the accuracy of taxonomic classification with limited sequencing resources, such as the availability of only short-read sequencing or insufficient DNA.IMPORTANCESkin acts as the primary barrier to human health. Considering the different microenvironments, microbial research should be conducted separately for different skin regions. Third-generation sequencing (TGS) technology can make full use of the discriminatory power of the full-length 16S gene. However, 16S sub-regions are widely used, particularly when faced with limited sequencing resources including the availability of only short-read sequencing and insufficient DNA. Comparing the 16S full-length and the derived variable region data from five different human skin sites, we confirmed the superiority of the V1-V3 region in skin microbiota analysis. We propose the targeting of specific sub-regions as a practical choice for microbial research.

4.
Environ Sci Pollut Res Int ; 31(29): 41844-41853, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38866932

RESUMEN

Biological degradation method, as an environmentally friendly, low-carbon, and clean pollution treatment technology, is widely used for the harmless disposal of oily sludge. The biodegradability of oily sludge with stable emulsification system, high oil, and water content is poor. Therefore, it is necessary to pre-treat the oily sludge to improve its biodegradability, including recover the petroleum resources and remove heavy metals and bio-toxic organic matters. This review systematically summarizes five oily sludge treatment methods and their influences on sludge biodegradability, including pyrolysis, chemical hot washing, solvent extraction, chemical oxidation, and hydrothermal. Pyrolysis at temperatures above 750 °C produces high molecular weight polycyclic aromatic hydrocarbons, chemical hot washing and chemical oxidation would cause secondary pollution, solvent extraction method could not be applied due to the high cost and high toxicity of the extractant, and the oil removal of hydrothermal method is inefficient. Additionally, the principles, advantages, and disadvantages of those treatments and the factors affecting microbial degradation were analyzed, which provide the development direction of pretreatment technology to improve the biodegradability of oily sludge.


Asunto(s)
Biodegradación Ambiental , Petróleo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
5.
Sci China Life Sci ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38913236

RESUMEN

The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.

6.
Sci Bull (Beijing) ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38702277

RESUMEN

Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.

7.
Forensic Sci Res ; 9(2): owad052, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765700

RESUMEN

Insertion/Deletion (InDel) polymorphisms, characterized by their smaller amplicons, reduced mutation rates, and compatibility with the prevalent capillary electrophoresis (CE) platforms in forensic laboratories, significantly contribute to the advancement and application of genetic analysis. Guizhou province in China serves as an important region for investigating the genetic structure, ethnic group origins, and human evolution. However, DNA data and the sampling of present-day populations are lacking, especially about the InDel markers. Here, we reported data on 47 autosomal InDels from 592 individuals from four populations in Guizhou (Han, Dong, Yi, and Chuanqing). Genotyping was performed with the AGCU InDel 50 kit to evaluate their utility for forensic purposes and to explore the population genetic structure. Our findings showed no significant deviations from Hardy-Weinberg and linkage equilibriums. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) for each population demonstrated that the kit could be applied to forensic individual identification and was an effective supplement for parentage testing. Genetic structure analyses, including principal component analysis, multidimensional scaling, genetic distance calculation, STRUCTURE, and phylogenetic analysis, highlighted that the genetic proximity of the studied populations correlates with linguistic, geographical, and cultural factors. The observed genetic variances within four research populations were less pronounced than those discerned between populations across different regions. Notably, the Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi. These results underscore the potential of InDel markers in forensic science and provide insights into the genetic landscape and human evolution in multi-ethnic regions like Guizhou. Key points: InDel markers show promise for forensic individual identification and parentage testing via the AGCU InDel 50 kit.Genetic analysis of Guizhou populations reveals correlations with linguistic, geographical, and cultural factors.Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi.

8.
BMC Genomics ; 25(1): 395, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649810

RESUMEN

The testes are the organs of gamete production and testosterone synthesis. Up to date, no model system is available for mammalian testicular development, and only few studies have characterized the mouse testis transcriptome from no more than three postnatal ages. To describe the transcriptome landscape of the developing mouse testis and identify the potential molecular mechanisms underlying testis maturation, we examined multiple RNA-seq data of mouse testes from 3-week-old (puberty) to 11-week-old (adult). Sperm cells appeared as expected in 5-week-old mouse testis, suggesting the proper sample collection. The principal components analysis revealed the genes from 3w to 4w clustered away from other timepoints, indicating they may be the important nodes for testicular development. The pairwise comparisons at two adjacent timepoints identified 7,612 differentially expressed genes (DEGs), resulting in 58 unique mRNA expression patterns. Enrichment analysis identified functions in tissue morphogenesis (3-4w), regulation of peptidase activity (4-5w), spermatogenesis (7-8w), and antigen processing (10-11w), suggesting distinct functions in different developmental periods. 50 hub genes and 10 gene cluster modules were identified in the testis maturation process by protein-protein interaction (PPI) network analysis, and the miRNA-lncRNA-mRNA, miRNA-circRNA-mRNA and miRNA-circRNA-lncRNA-mRNA competing endogenous RNA (ceRNA) networks were constructed. The results suggest that testis maturation is a complex developmental process modulated by various molecules, and that some potential RNA-RNA interactions may be involved in specific developmental stages. In summary, this study provides an update on the molecular basis of testis development, which may help to understand the molecular mechanisms of mouse testis development and provide guidance for mouse reproduction.


Asunto(s)
Perfilación de la Expresión Génica , Testículo , Animales , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Ratones , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , MicroARNs/genética , MicroARNs/metabolismo
9.
Sci Total Environ ; 930: 172034, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38657806

RESUMEN

Due to their assembly properties and variable molecular weights, the potential biological toxicity effects of macromolecular organic ligand heavy metal complexes are more difficult to predict and their mechanisms are more complex. This study unraveled the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) (TA-Cr(III)) complex on alga Raphidocelis subcapitata using multi-omics approaches. Results showed TA-Cr(III) complex caused oxidative damage and photosystem disruption, destroying the cell morphology and inhibiting algal growth by >80 % at high exposure levels. TA-Cr(III) complex stress down-regulated proteins linked to proliferation, photosynthesis and antioxidation while upregulating carbon fixation, TCA cycle and amino acid metabolism. The increase of fumarate, citrate, isocitrate and semialdehyde succinate was validated by metabolomics analysis, which improved the TCA cycle, amino acid metabolism and carbon fixation. Activation of the above cellular processes somewhat compensated for the inhibition of algal photosynthesis by TA-Cr(III) complex exposure. In conclusion, physiological toxicity coupled with downstream metabolic compensation in response to Cr(III) complex of macromolecular was characterized in Raphidocelis subcapitata, unveiling the adaptive mechanism of algae under the stress of heavy metal complexes with macromolecular organic ligands.


Asunto(s)
Taninos , Cromo/toxicidad , Fotosíntesis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Polifenoles
10.
Fa Yi Xue Za Zhi ; 40(1): 50-58, 2024 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500461

RESUMEN

OBJECTIVES: To establish and forensically verify a 42 microhaplotypes (mircohaps, MHs) multiplex assay system based on next-generation sequencing (NGS), and to explore the application value of this system in the practice of forensic genetics. METHODS: A total of 42 highly polymorphic MHs were selected from previous studies, and sequenced by the MiSeq FGxTM platform to verify the repeata-bility, sensitivity, specificity, stability, and mixture analysis ability of the detection system. Through population genetic investigation of 102 unrelated Chinese Han individuals in Liyang City, Jiangsu Province, China, the application value of this system in forensic genetics was evaluated. RESULTS: The sequencing repeatability of the 42-plex MHs assay was 100% and the sensitivity was as low as 0.062 5 ng. The system had the ability to withstand the interference of indigo (≤2 500 ng/µL), humic acid (≤9 ng/µL), hemoglobin(≤20 µmol), and urea (≤200 ng/µL) and to detect mixtures of 2 people (1∶19), 3 people (1∶1∶9) and 4 people (1∶1∶1∶9). Based on 102 individual data, the combined power of discrimination and the combined power of exclusion were 1-3.45×10-30 and 1-3.77×10-11, respectively, and the average effect value of alleles was 2.899. CONCLUSIONS: The 42-plex MHs assay was successfully established in this study and this system has high repeatability and sensitivity, good anti-jamming ability and mixture analysis ability. The 42 MHs are highly polymorphism and have good application value in individual identification and paternity testing.


Asunto(s)
Genética Forense , Genética de Población , Humanos , Frecuencia de los Genes , Genotipo , Polimorfismo Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Dermatoglifia del ADN , Repeticiones de Microsatélite
11.
Nat Commun ; 15(1): 1071, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316797

RESUMEN

While significant advances have been made in predicting static protein structures, the inherent dynamics of proteins, modulated by ligands, are crucial for understanding protein function and facilitating drug discovery. Traditional docking methods, frequently used in studying protein-ligand interactions, typically treat proteins as rigid. While molecular dynamics simulations can propose appropriate protein conformations, they're computationally demanding due to rare transitions between biologically relevant equilibrium states. In this study, we present DynamicBind, a deep learning method that employs equivariant geometric diffusion networks to construct a smooth energy landscape, promoting efficient transitions between different equilibrium states. DynamicBind accurately recovers ligand-specific conformations from unbound protein structures without the need for holo-structures or extensive sampling. Remarkably, it demonstrates state-of-the-art performance in docking and virtual screening benchmarks. Our experiments reveal that DynamicBind can accommodate a wide range of large protein conformational changes and identify cryptic pockets in unseen protein targets. As a result, DynamicBind shows potential in accelerating the development of small molecules for previously undruggable targets and expanding the horizons of computational drug discovery.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Ligandos , Proteínas/metabolismo , Conformación Proteica , Descubrimiento de Drogas , Unión Proteica , Simulación del Acoplamiento Molecular
12.
Plant Physiol Biochem ; 207: 108430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38364632

RESUMEN

Copper oxide nanoparticles (CuO NPs) influence the uptake of heavy metal ions by plants, but molecular mechanism is still unknown. Here, we proved the mechanism of CuO NPs affecting Cd absorption in Arabidopsis root. 4-d-old seedlings were treated by 10 and 20 mg/L CuO NPs for 3 d, which decreased the contents of cellulose and hemicellulose in roots. Moreover, the contents of some important monosaccharides were altered by CuO NPs, including arabinose, glucose and mannose. Biosynthesis of cellulose and hemicellulose is regulated by cellulose synthase A complexe (CSC) dynamics. The synthesis of tubulin cytoskeleton was inhibited by CuO NPs, which resulted in the decrease of CSCs bidirectional velocities. Furthermore, the arrangement and network of cellulose fibrillar bundles were disrupted by CuO NPs. CuO NPs treatment significantly increased the influx of Cd2+. The accumulation and translocation of Cd were increased by 10 and 20 mg/L CuO NPs treatment. The subcellular distribution of Cd in root cells indicated CuO NPs decrease the enrichment of Cd in cell wall, but increase the enrichment of Cd in soluble fraction and organelle. In light of these findings, we proposed a mechanistic model in which CuO NPs destroy the ordered structure of the cell wall, alter the uptake and distribution of Cd in Arabidopsis.


Asunto(s)
Arabidopsis , Nanopartículas del Metal , Nanopartículas , Cobre/farmacología , Cobre/química , Cadmio/farmacología , Nanopartículas/química , Óxidos , Celulosa , Nanopartículas del Metal/química
13.
Mol Genet Genomics ; 299(1): 9, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374461

RESUMEN

Currently, the most commonly used method for human identification and kinship analysis in forensic genetics is the detection of length polymorphism in short tandem repeats (STRs) using polymerase chain reaction (PCR) and capillary electrophoresis (CE). However, numerous studies have shown that considerable sequence variations exist in the repeat and flanking regions of the STR loci, which cannot be identified by CE detection. Comparatively, massively parallel sequencing (MPS) technology can capture these sequence differences, thereby enhancing the identification capability of certain STRs. In this study, we used the ForenSeq™ DNA Signature Prep Kit to sequence 58 STRs and 94 individual identification SNPs (iiSNPs) in a sample of 220 unrelated individuals from the Eastern Chinese Han population. Our aim is to obtain MPS-based STR and SNP data, providing further evidence for the study of population genetics and forensic applications. The results showed that the MPS method, utilizing sequence information, identified a total of 486 alleles on autosomal STRs (A-STRs), 97 alleles on X-chromosome STRs (X-STRs), and 218 alleles on Y-chromosome STRs (Y-STRs). Compared with length polymorphism, we observed an increase of 260 alleles (157, 31, and 72 alleles on A-STRs, X-STRs, and Y-STRs, respectively) across 36 STRs. The most substantial increments were observed in DYF387S1 and DYS389II, with increases of 287.5% and 250%, respectively. The most increment in the number of alleles was found at DYF387S1 and DYS389II (287.5% and 250%, respectively). The length-based (LB) and sequence-based (SB) combined random match probability (RMP) of 27 A-STRs were 6.05E-31 and 1.53E-34, respectively. Furthermore, other forensic parameters such as total discrimination power (TDP), cumulative probability of exclusion of trios (CPEtrio), and duos (CPEduo) were significantly improved when using the SB data, and informative data were obtained for the 94 iiSNPs. Collectively, these findings highlight the advantages of MPS technology in forensic genetics, and the Eastern Chinese Han genetic data generated in this study could be used as a valuable reference for future research in this field.


Asunto(s)
Dermatoglifia del ADN , Etnicidad , Humanos , Dermatoglifia del ADN/métodos , Etnicidad/genética , Genética de Población , Polimorfismo de Nucleótido Simple/genética , Repeticiones de Microsatélite/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , China , ADN , Análisis de Secuencia de ADN/métodos
14.
Forensic Sci Int Genet ; 69: 102979, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38043150

RESUMEN

Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.


Asunto(s)
Líquidos Corporales , Humanos , ARN Mensajero/genética , ARN , Marcadores Genéticos , ADN/genética , Genética Forense/métodos , Semen , Saliva
15.
Fa Yi Xue Za Zhi ; 39(5): 441-446, 2023 Oct 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38006262

RESUMEN

OBJECTIVES: To evaluate the forensic application value of an age estimation model based on DNA methylation in eastern Chinese Han population, and to provide a theoretical basis for exploring age estimation models suitable for different detection platforms. METHODS: According to the 6 age-related methylation sites in the published blood DNA methylation age estimation models of Chinese Han population, the DNA methylation level of 48 samples was detected by pyrosequencing and next-generation sequencing (NGS). After submitting DNA methylation levels to the age estimation model, the DNA methylation ages were predicted and compared with their real ages. RESULTS: The 6 DNA methylation sites in both detection techniques were age-related, with an R2 of 0.85 and a median absolute deviation (MAD) of 4.81 years when using pyrosequencing;with an R2 of 0.84 and MAD of 4.41 years when using NGS. CONCLUSIONS: The blood DNA methylation age estimation model can be used under pyrosequencing and multi-purpose regional methylation enrichment sequencing technology based on NGS and it can accurately estimate the age.


Asunto(s)
Metilación de ADN , Pueblos del Este de Asia , Humanos , Envejecimiento/genética , Islas de CpG , Genética Forense/métodos
16.
Fa Yi Xue Za Zhi ; 39(5): 465-470, 2023 Oct 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38006266

RESUMEN

OBJECTIVES: To explore the feasibility of genetic marker detection of semen-specific coding region single nucleotide polymorphism (cSNP) based on SNaPshot technology in semen stains and mixed body fluid identification. METHODS: Genomic DNA (gDNA) and total RNA were extracted from 16 semen stains and 11 mixtures composed of semen and venous blood, and the total RNA was reverse transcribed into complementary DNA (cDNA). The cSNP genetic markers were screened on the validated semen-specific mRNA coding genes. The cSNP multiplex detection system based on SNaPshot technology was established, and samples were genotyped by capillary electrophoresis (CE). RESULTS: A multiplex detection system containing 5 semen-specific cSNPs was successfully established. In 16 semen samples, except the cSNP located in the TGM4 gene showed allele loss in cDNA detection results, the gDNA and cDNA typing results of other cSNPs were highly consistent. When detecting semen-venous blood mixtures, the results of cSNP typing detected were consistent with the genotype of semen donor and were not interfered by the genotype of venous blood donor. CONCLUSIONS: The method of semen-specific cSNPs detection by SNaPshot technology method can be applied to the genotyping of semen (stains) and provide information for determining the origin of semen in mixed body fluids (stains).


Asunto(s)
Líquidos Corporales , Semen , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , ADN Complementario/genética , ARN Mensajero/genética , ADN , Saliva , Genética Forense/métodos
17.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430608

RESUMEN

Unmanned aerial vehicles (UAVs) can be used to relay sensing information and computational workloads from ground users (GUs) to a remote base station (RBS) for further processing. In this paper, we employ multiple UAVs to assist with the collection of sensing information in a terrestrial wireless sensor network. All of the information collected by the UAVs can be forwarded to the RBS. We aim to improve the energy efficiency for sensing-data collection and transmission by optimizing UAV trajectory, scheduling, and access-control strategies. Considering a time-slotted frame structure, UAV flight, sensing, and information-forwarding sub-slots are confined to each time slot. This motivates the trade-off study between UAV access-control and trajectory planning. More sensing data in one time slot will take up more UAV buffer space and require a longer transmission time for information forwarding. We solve this problem by a multi-agent deep reinforcement learning approach that takes into consideration a dynamic network environment with uncertain information about the GU spatial distribution and traffic demands. We further devise a hierarchical learning framework with reduced action and state spaces to improve the learning efficiency by exploiting the distributed structure of the UAV-assisted wireless sensor network. Simulation results show that UAV trajectory planning with access control can significantly improve UAV energy efficiency. The hierarchical learning method is more stable in learning and can also achieve higher sensing performance.

18.
Am J Cardiol ; 202: 90-99, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423176

RESUMEN

Despite recent advances in the prevention of coronary heart disease, the mortality rate of sudden cardiac death (SCD) remains high, which has become a substantial public health issue. Methyltransferase-like protein 16 (METTL16), as a newly discovered m6A methyltransferase, may be related to cardiovascular diseases. In the present study, a 6-base-pair insertion/deletion (del) polymorphism (rs58928048) in the METTL16 3'untranslated region (3'UTR) region was chosen as a candidate variant based on the findings of systematic screening. Then, the association between rs58928048 and susceptibility to SCD originating from coronary artery disease (SCD-CAD) in the Chinese population was investigated by conducting a case-control study that included 210 SCD-CAD cases and 644 matched healthy controls. Logistic regression analysis showed that the del allele of rs58928048 significantly reduced the SCD risk (odds ratio 0.69, 95% confidence interval 0.55 to 0.87, p = 0.00177). Genotype-phenotype correlation studies in human cardiac tissue samples demonstrated that the lower messenger RNA and protein expression levels of METTL16 were associated with the del allele of rs58928048. In the dual-luciferase activity assay, the del/del genotype exhibited lower transcriptional competence. Further bioinformatic analysis showed that the rs58928048 del variant may create transcription factor binding sites. Finally, pyrosequencing showed that the genotype of rs58928048 was related to the methylation status of the 3'UTR region of METTL16. Taken together, our findings provide evidence that rs58928048 may affect the methylation status of the 3'UTR region of METTL16 and subsequently affect its transcriptional activity thus as a potential genetic risk marker for SCD-CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Muerte Súbita Cardíaca , Predisposición Genética a la Enfermedad , Metiltransferasas , Humanos , Regiones no Traducidas 3' , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/genética , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Pueblos del Este de Asia , Metiltransferasas/genética , Polimorfismo Genético
19.
Forensic Sci Res ; 8(1): 70-78, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37415794

RESUMEN

Y-chromosome short tandem repeats (Y-STRs) have a unique role in forensic investigation. However, low-medium mutating Y-STRs cannot meet the requirements for male lineage differentiation in inbred populations, whereas rapidly mutating (RM) high-resolution Y-STRs might cause unexpected exclusion of paternal lineages. Thus, combining Y-STRs with low and high mutation rates helps to distinguish male individuals and lineages in family screening and analysis of genetic relationships. In this study, a novel 6-dye, 41-plex Y-STR panel was developed and validated, which included 17 loci from the Yfiler kit, nine RM Y-STR loci, 15 low-medium mutating Y-STR loci, and three Y-InDels. Developmental validation was performed for this panel, including size precision testing, stutter analysis, species specificity analysis, male specificity testing, sensitivity testing, concordance evaluation, polymerase chain reaction inhibitors analysis, and DNA mixture examination. The results demonstrated that the novel 41-plex Y-STR panel, developed in-house, was time efficient, accurate, and reliable. It showed good adaptability to directly amplify a variety of case-type samples. Furthermore, adding multiple Y-STR loci significantly improved the system's ability to distinguish related males, making it highly informative for forensic applications. In addition, the data obtained were compatible with the widely used Y-STR kits, facilitating the search and construction of population databases. Moreover, the addition of Y-Indels with short amplicons improves the analyses of degraded samples. Key Points: A novel multiplex comprising 41 Y-STR and 3 Y-InDel was developed for forensic application.The multiplex included rapidly mutating Y-STRs and low-medium mutating Y-STRs, which is compatible with many commonly used Y-STR kits.The multiplex is a powerful tool for distinguishing related males, familial searching, and constructing DNA databases.

20.
Ultrason Sonochem ; 98: 106498, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385045

RESUMEN

This study used electrochemical noise technology to analyse the effects of surface damage induced by cavitation erosion (CE) on the pitting and passivation behaviours of TA31 Ti alloy. According to the results, TA31 Ti alloy exhibited high corrosion resistance in NaCl solutions. However, the residual tensile stress layer generated during grinding and polishing reduced its passivation ability. Subsequently, the residual tensile stress layer was eliminated after CE for 1 h, improving the passivation ability of the material. Thereafter, pitting corrosion was initiated on the material surface. Increasing the CE time from 1 h to 2 h gradually decreased the passivation ability of the alloy. A large number of CE holes promoted the transition from pitting initiation to metastable pitting growth. which gradually dominated the surface of TA31 Ti alloy. The damage mechanism of uniform thinning increased the passivation ability and stability of the alloy with the increase in CE time from 2 h to 6 h. Therefore, the surface of TA31 Ti alloy was dominated by the initiation of pitting corrosion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...