Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 9333-9349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286354

RESUMEN

Introduction: Immunotherapy has led to a paradigm shift in reinvigorating treatment of cancer. Nevertheless, tumor associated macrophages (TAMs) experience functional polarization on account of the generation of suppressive metabolites, contributing to impaired antitumor immune responses. Methods: Hence, metabolic reprogramming of tumor microenvironment (TME) can synergistically improve the efficacy of anti-tumor immunotherapy. Herein, we engineered an iron-based nanoplatform termed ERFe3O4 NPs. This platform features hollow Fe3O4 nanoparticles loaded with the natural product emodin, the outer layer is coated with red blood cell membrane (mRBCs) inserted with DSPE-PEG2000-galactose. This effectively modulates lactate production, thereby reversing the tumor immune suppressive microenvironment (TIME). Results: The ERFe3O4 NPs actively targeted TAMs on account of their ability to bind to M2-like TAMs with high expression of galectin (Mgl). ERFe3O4 NPs achieved efficient ability to reverse TIME via the production of reducing lactate and prompting enrichment iron of high concentrations. Furthermore, ERFe3O4 NPs resulted in heightened expression of CD16/32 and enhanced TNF-α release, indicating promotion of M1 TAMs polarization. In vitro and in vivo experiments revealed that ERFe3O4 NPs induced significant apoptosis of tumor cells and antitumor immune response. Discussion: This study combines Traditional Chinese Medicine (TCM) with nanomaterials to synergistically reprogram TAMs and reverse TIME, opening up new ideas for improving anti-tumor immunotherapy.


Asunto(s)
Inmunoterapia , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Inmunoterapia/métodos , Ratones , Línea Celular Tumoral , Humanos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Ratones Endogámicos C57BL , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Apoptosis/efectos de los fármacos , Hierro/química , Femenino
2.
Biomater Sci ; 12(18): 4519-4545, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39083017

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/terapia , Humanos , Animales , Nanoestructuras/química
3.
Free Radic Biol Med ; 204: 226-242, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146698

RESUMEN

Influenza A virus can induce nasal inflammation by stimulating the death of nasal mucosa epithelium, however, the mechanism is not clear. In this study, to study the causes and mechanisms of nasal mucosa epithelial cell death caused by Influenza A virus H1N1, we isolated and cultured human nasal epithelial progenitor cells (hNEPCs) and exposed them to H1N1 virus after leading differentiation. Then we performed high-resolution untargeted metabolomics and RNAseq analysis of human nasal epithelial cells (hNECs) infected with H1N1 virus. Surprisingly, H1N1 virus infection caused the differential expression of a large number of ferroptosis related genes and metabolites in hNECs. Furthermore, we have observed a significant reduction in Nrf2/KEAP1 expression, GCLC expression, and abnormal glutaminolysis. By constructing overexpression vector of GCLC and the shRNAs of GCLC and Keap1, we determined the role of NRF2-KEAP1-GCLC signaling pathway in H1N1 virus-induced ferroptosis. In addition, A glutaminase antagonist, JHU-083, also demonstrated that glutaminolysis can regulate the NRF2-KEAP1-GCLC signal pathway and ferroptosis. According to this study, H1N1 virus can induce the ferroptosis of hNECs via the NRF2-KEAP1-GCLC signal pathway and glutaminolysis, leading to nasal mucosal epithelial inflammation. This discovery is expected to provide an attractive therapeutic target for viral-induced nasal inflammation.


Asunto(s)
Enfermedades Transmisibles , Ferroptosis , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Enfermedades Transmisibles/metabolismo , Células Epiteliales/metabolismo , Glutamato-Cisteína Ligasa/genética , Inflamación/metabolismo , Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mucosa Nasal/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA