Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446439

RESUMEN

Red, green, and blue light InxGa1-xN multiple quantum wells have been grown on GaN/γ-LiAlO2 microdisk substrates by plasma-assisted molecular beam epitaxy. We established a mechanism to optimize the self-assembly growth with ball-stick model for InxGa1-xN multiple quantum well microdisks by bottom-up nanotechnology. We showed that three different red, green, and blue lighting micro-LEDs can be made of one single material (InxGa1-xN) solely by tuning the indium content. We also demonstrated that one can fabricate a beautiful InxGa1-xN-QW microdisk by choosing an appropriate buffer layer for optoelectronic applications.

2.
Phys Med Biol ; 68(7)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808914

RESUMEN

Objective.Together with novel photodetector technologies and emerging electronic front-end designs, scintillator material research is one of the key aspects to obtain ultra-fast timing in time-of-flight positron emission tomography (TOF-PET). In the late 1990s, Cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) has been established as the state-of-the-art PET scintillator due to its fast decay time, high light yield and high stopping power. It has been shown that co-doping with divalent ions, such as Ca2+and Mg2+, is beneficial for its scintillation characteristics and timing performance. Therefore, this work aims to identify a fast scintillation material to combine it with novel photosensor technologies to push the state of the art in TOF-PET.Approach.This study evaluates commercially available LYSO:Ce,Ca and LYSO:Ce,Mg samples manufactured by Taiwan Applied Crystal Co., LTD regarding their rise and decay times as well as their coincidence time resolution (CTR) with both ultra-fast high-frequency (HF) readout and commercially available readout electronics, i.e. the TOFPET2 ASIC.Main results.The co-doped samples exhibit state-of-the-art rise times of on average 60 ps and effective decay times of on average 35 ns. Using the latest technological improvements made on NUV-MT SiPMs by Fondazione Bruno Kessler and Broadcom Inc., a 3 × 3 × 19 mm3LYSO:Ce,Ca crystal achieves a CTR of 95 ps (FWHM) with ultra-fast HF readout and 157 ps (FWHM) with the system-applicable TOFPET2 ASIC. Evaluating the timing limits of the scintillation material, we even show a CTR of 56 ps (FWHM) for small 2 × 2 × 3 mm3pixels. A complete overview of the timing performance obtained with different coatings (Teflon, BaSO4) and different crystal sizes coupled to standard Broadcom AFBR-S4N33C013 SiPMs will be presented and discussed.Significance.This work thoroughly evaluates commercially available co-doped LYSO:Ce crystals and, in combination with novel NUV-MT SiPMs, shows a TOF performance that significantly exceeds the current state of the art.


Asunto(s)
Tomografía de Emisión de Positrones , Conteo por Cintilación , Fotones , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos , Silicatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...