Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Nano ; 18(24): 15935-15949, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833531

RESUMEN

Monitoring T lymphocyte differentiation is essential for understanding T cell fate regulation and advancing adoptive T cell immunotherapy. However, current biomarker analysis methods necessitate cell lysis, leading to source depletion. Intracellular pH (pHi) can be affected by the presence of lactic acid (LA), a metabolic mediator of T cell activity such as glycolysis during T cell activation; therefore, it is a potentially a good biomarker of T cell state. In this work, a dual emitting enhancement-based nanoprobe, namely, AIEgen@F127-AptCD8, was developed to accurately detect the pHi of T cells to "read" the T cell differentiation process. The nanocore of this probe comprises a pair of AIE dyes, TPE-AMC (pH-sensitive moiety) and TPE-TCF, that form a donor-acceptor pair for sensitive detection of pHi by dual emitting enhancement analysis. The nanoprobe exhibits a distinctly sensitive narrow range of pHi values (from 6.0 to 7.4) that can precisely distinguish the differentiated lymphocytes from naïve ones based on their distinct pHi profiles. Activated CD8+ T cells demonstrate lower pHi (6.49 ± 0.09) than the naïve cells (7.26 ± 0.11); Jurkat cells exhibit lower pHi (6.43 ± 0.06) compared to that of nonactivated ones (7.29 ± 0.09) on 7 days post-activation. The glycolytic product profiles in T cells strongly correlate with their pHi profiles, ascertaining the reliability of probing pHi for predicting T cell states. The specificity and dynamic detection capabilities of this nanoprobe make it a promising tool for indirectly and noninvasively monitoring T cell activation and differentiation states.


Asunto(s)
Diferenciación Celular , Concentración de Iones de Hidrógeno , Humanos , Colorantes Fluorescentes/química , Nanopartículas/química , Linfocitos T/citología , Linfocitos T/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Activación de Linfocitos , Animales
2.
Langmuir ; 40(24): 12709-12720, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38843518

RESUMEN

Great aqueous dispersibility, a large specific surface area, and high impermeability make graphene oxide (GO) the ideal candidate for a high-performance corrosion inhibitor. Numerous symmetrical modification methods have been reported to enhance the adsorption of GO on metal surfaces in various corrosive media. This work aims to investigate the enhancement and mechanism of unilateral hydrophobic modification on the corrosion inhibition performance of GO. In this study, amphiphilic Janus GO (JGO) was prepared by grafting hydrophobic alkyl chains on one side of GO, and its anticorrosion performance was evaluated via weight loss experiments and electrochemical tests. The results revealed that the corrosion inhibition efficiency for Q235 mild steel (MS) in a 1 M HCl aqueous solution of 25 ppm JGO (81.08%) was much higher than that of GO at the same concentration (22.12%). Furthermore, the Langmuir adsorption isotherm and computational study demonstrated that the synergistic effect of physical adsorption and chemical adsorption promoted the hydrophilic side of JGO close to the surface of the metal, and the dense protective layer was formed by the hydrophobic chains toward the corrosive medium, which effectively hindered the corrosion of MS by the acidic liquid. This study emphasizes the significant role of asymmetrically modified hydrophobic alkyl chains in improving the corrosion prevention performance of GO and provides a perspective for the structural design of GO-based corrosion inhibitors.

3.
Langmuir ; 40(17): 9012-9019, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38625688

RESUMEN

Hydrate-based CO2 storage in the ocean is considered a potential method for mitigating the greenhouse effect. Numerous studies demonstrated that NaCl exhibited the dual effects of promotion and inhibition in the nucleation and growth processes of CO2 hydrate, whose mechanisms remain unclear. In this study, the effects of NaCl at various concentrations on the CO2 hydrate growth and crystal are investigated. The independent gradient model based on Hirshfeld partition, electrostatic potential, and binding energy is conducted to study the interaction between ions and water molecules. The motion trajectories of ions are observed at the molecular level to reflect the impact of ion motion on hydrate growth. The results show that the influence of NaCl on hydrate growth depends on a delicate balance of dual promotion-inhibition effects. NaCl can combine more water molecules and provide a transport channel of CO2 to promote hydrate growth at low concentrations. Meanwhile, the promoting effects shift toward inhibition with increasing NaCl concentrations. In a word, this paper proposes a novel mechanism for the dual promotion-inhibition effects of NaCl on hydrate growth, which is significant for further research on hydrate-based CO2 storage in the ocean.

4.
ACS Appl Mater Interfaces ; 16(14): 17432-17441, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38544402

RESUMEN

Z-scheme heterostructure-based photocatalysts consist of a reduction photocatalyst and an oxidation photocatalyst, enabling them to possess a high capacity for both reduction and oxidation. However, the coupling reaction between photocatalytic H2 generation through water reduction and sterilization using Z-scheme systems has been rarely reported. Herein, 1D W18O49 nanowires embedded over 2D g-C3N4 nanosheets are well-constructed as an integrated Z-scheme heterojunction. Experimental results and density functional theory calculations not only demonstrate the achievement of efficient interfacial charge separation and transport, leading to prolonged lifetime of photogenerated charge carriers, but also directly confirm the mechanism of Z-scheme charge transfer. As expected, the optimized W18O49/g-C3N4 nanostructure exhibits superior photocatalytic sterilization activity against Staphylococcus aureus as well as excellent H2 generation performance under visible-light irradiation (λ ≥ 420 nm). Due to its nontoxic nature, W18O49/g-C3N4 holds great potential in eradicating bacterial infections in living organisms.


Asunto(s)
Bacterias , Luz , Isótopos de Oxígeno , Catálisis
5.
Biosens Bioelectron ; 248: 115969, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154329

RESUMEN

Upconversion nanoparticles (UCNPs) are ideal donors for luminescence resonance energy transfer (LRET)-based biosensors due to their excellent upconversion luminescence properties. However, the relatively large size of antibodies and proteins limits the application of UCNPs-based LRET biosensors in protein detection because the large steric hindrance of proteins leads to low energy transfer efficiency between UCNPs and receptors. Herein, we developed a magnetic responsive UCNPs-based LRET biosensor to control the coupling distance between antibody-functionalized UCNPs (Ab-UCNPs) as donors and antibody-PEG linker-magnetic gold nanoparticles (Ab-PEG-MGNs) as acceptors for ultrasensitive and highly selective detection of SARS-CoV-2 spike proteins. Our results showed that this platform reversibly shortened the coupling distance between UCNPs and MGNs and enhanced the LRET signal with a 10-fold increase in the limit of detection (LOD) from 20.6 pg/mL without magnetic modulation to 2.1 pg/mL with magnetic modulation within 1 h. The finite-difference time-domain (FDTD) simulation with cyclic distance change confirmed the distance-dependent LRET efficiency under magnetic modulation, which supported the experimental results. Moreover, the applications of this magnetic-responsive UCNP-based LRET biosensor could be extended to other large-size biomolecule detection.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Nanopartículas , Humanos , Glicoproteína de la Espiga del Coronavirus , Luminiscencia , Oro , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Transferencia Resonante de Energía de Fluorescencia/métodos , Anticuerpos
6.
Opt Express ; 31(14): 23183-23197, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475409

RESUMEN

An algorithm is proposed for few-shot-learning (FSL) jointing modulation format identification (MFI) and optical signal-to-noise ratio (OSNR) estimation. The constellation diagrams of six widely-used modulation formats over a wide range of OSNR (10-40 dB) are obtained by a dual-polarization (DP) coherent detection system at 32 GBaud. We introduce auxiliary task to model-agnostic meta-learning (MAML) which makes the gradient of meta tasks decline faster in the direction of optimal target. Ablation experiments including multi-task model-agnostic meta-learning (MT-MAML), single-task model-agnostic meta-learning (ST-MAML) and adaptive multi-task learning (AMTL) are executed to train a data set with only 20 examples for each class. First, we discuss the impact from the number of shots and gradient descent steps for support set on the meta-learning based schemes to determine the best hyper parameters and conclude that the proposed method better captures the similarity between new and previous knowledge at 4 shot and 1 step. Withdrawn fine-tuning, the model achieves the lowest error ∼0.37 dB initially. Then, we simulate two other schemes (AMTL and ST-MAML), and the numerical results shows that mean square error (MSE) are ∼0.6 dB, ∼0.3 dB and ∼0.18 dB, respectively, proposed method has faster adaption to main task. For low order modulation formats, the proposed method almost reduces the error to 0. Meanwhile, we reveal the degree of deviation between the prediction and target and find that the deviation is mainly concentrated in the high OSNR range of 25-40 dB. Specifically, we investigate the variation curve of adaptive weights during pretraining and conclude that after 30 epoch, the model's attention was almost entirely focused on estimating OSNR. In addition, we study the generalization ability of the model by varying the transmission distance. Importantly, excellent generalization is also experimentally verified. In this paper, the method proposed will greatly reduce the cost for repetitively collecting data and the training resources required for fine-tuning models when OPM devices need to be deployed at massive nodes in dynamic optical networks.

7.
Nano Lett ; 23(19): 9160-9169, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37494286

RESUMEN

Nanosubstrate engineering can be a biomechanical approach for modulating stem cell differentiation in tissue engineering. However, the study of the effect of clathrin-mediated processes on manipulating this behavior is unexplored. Herein, we develop integrin-binding nanosubstrates with confined nanogeometries that regulate clathrin-mediated adhesion- or endocytosis-active signaling pathways for modulating stem fates. Isotropically presenting ligands on the nanoscale enhances the expression of clathrin in cells, thereby facilitating uptake of dexamethasone-loaded nanoparticles (NPs) to boost osteogenesis of stem cells. In contrast, anisotropic ligand nanogeometry suppresses this clathrin-mediated NP entry by strengthening the association between clathrin and adhesion spots to reinforce mechanotransduced signaling, which can be abrogated by the pharmacological inhibition of clathrin. Meanwhile, inhibiting focal adhesion formation hinders cell spreading and enables a higher endocytosis efficiency. Our findings reveal the crucial roles of clathrin in both endocytosis and mechanotransduction of stem cells and provide the parameter of ligand nanogeometry for the rational design of biomaterials for tissue engineering.


Asunto(s)
Clatrina , Integrinas , Integrinas/metabolismo , Clatrina/metabolismo , Ligandos , Mecanotransducción Celular , Endocitosis , Células Madre/metabolismo
8.
Materials (Basel) ; 16(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37297168

RESUMEN

Predicting the punching shear strength (PSS) of fiber-reinforced polymer reinforced concrete (FRP-RC) beams is a critical task in the design and assessment of reinforced concrete structures. This study utilized three meta-heuristic optimization algorithms, namely ant lion optimizer (ALO), moth flame optimizer (MFO), and salp swarm algorithm (SSA), to select the optimal hyperparameters of the random forest (RF) model for predicting the punching shear strength (PSS) of FRP-RC beams. Seven features of FRP-RC beams were considered as inputs parameters, including types of column section (TCS), cross-sectional area of the column (CAC), slab's effective depth (SED), span-depth ratio (SDR), compressive strength of concrete (CSC), yield strength of reinforcement (YSR), and reinforcement ratio (RR). The results indicate that the ALO-RF model with a population size of 100 has the best prediction performance among all models, with MAE of 25.0525, MAPE of 6.5696, R2 of 0.9820, and RMSE of 59.9677 in the training phase, and MAE of 52.5601, MAPE of 15.5083, R2 of 0.941, and RMSE of 101.6494 in the testing phase. The slab's effective depth (SED) has the largest contribution to predicting the PSS, which means that adjusting SED can effectively control the PSS. Furthermore, the hybrid machine learning model optimized by metaheuristic algorithms outperforms traditional models in terms of prediction accuracy and error control.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37269522

RESUMEN

Identification of contaminant sources in rivers is crucial for river protection and emergency response. This study presents an innovative approach for identifying river pollution sources by using Bayesian inference and cellular automata (CA) modeling. A general Bayesian framework is proposed that combines the CA model with observed data to identify unknown sources of river pollution. To reduce the computational burden of the Bayesian inference, a CA contaminant transport model is developed to efficiently simulate pollutant concentration values in the river. These simulated concentration values are then used to calculate the likelihood function of available measurements. The Markov chain Monte Carlo (MCMC) method is used to produce the posterior distribution of contaminant source parameters, which is a sampling-based method that enables the estimation of complex posterior distributions. The suggested methodology is applied to a real case study of the Fen River in Yuncheng City, Shanxi Province, Northern China, and it estimates the release time, release mass, and source location with relative errors below 19%. The research indicates that the proposed methodology is an effective and flexible way to identify the location and concentrations of river contaminant sources.

10.
Materials (Basel) ; 16(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37109970

RESUMEN

The combination of rice husk ash and common concrete both reduces carbon dioxide emission and solves the problem of agricultural waste disposal. However, the measurement of the compressive strength of rice husk ash concrete has become a new challenge. This paper proposes a novel hybrid artificial neural network model, optimized using a reptile search algorithm with circle mapping, to predict the compressive strength of RHA concrete. A total of 192 concrete data with 6 input parameters (age, cement, rice husk ash, super plasticizer, aggregate, and water) were utilized to train proposed model and compare its predictive performance with that of five other models. Four statistical indices were adopted to evaluate the predictive performance of all the developed models. The performance evaluation indicates that the proposed hybrid artificial neural network model achieved the most satisfactory prediction accuracy regarding R2 (0.9709), VAF (97.0911%), RMSE (3.4489), and MAE (2.6451). The proposed model also had better predictive accuracy than that of previously developed models on the same data. The sensitivity results show that age is the most important parameter for predicting the compressive strength of RHA concrete.

11.
Biosens Bioelectron ; 230: 115270, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023551

RESUMEN

MicroRNA-125b (miR-125b) is highly associated with synaptic dysfunction and tau hyperphosphorylation in the early pathogenesis of Alzheimer's disease (AD), making it a promising biomarker for early AD diagnosis. Hence, there is an urgent need for a reliable sensing platform to assist in situ miR-125b detection. In this work, we report a dual "turn-on" fluorescence biosensor based on the nanocomposite of aggregation-induced emission fluorogen (AIEgen)-labeled oligonucleotide (TPET-DNA) probes immobilized on the surface of cationic dextran modified molybdenum disulfide (TPET-DNA@Dex-MoS2). In the presence of the target, TEPT-DNA can hybridize with miR-125b to form a DNA/RNA duplex, causing TPET-DNA to detach from the surface of Dex-MoS2 that simultaneously activates the dual fluorescence enhancement processes: (1) recovery of TPET-DNA signal and (2) strong fluorescent emission from AIEgen triggered by restriction of the intramolecular rotation. The sensing performance of TPET-DNA@Dex-MoS2 was demonstrated by detecting miR-125b in vitro with good sensitivity at the picomolar level and rapid response (≤1 h) without amplification procedures. Furthermore, our nanoprobes exhibited excellent imaging capabilities to aid real-time monitoring of the endogenous miR-125b in PC12 cells and brain tissues of mice AD model induced by local administration of okadaic acid (OA). The fluorescence signals of the nanoprobes indicated miR-125b was spatially associated with phosphorylated tau protein (p-tau) in vitro and in vivo. Therefore, TPET-DNA@Dex-MoS2 could be a promising tool for in situ and real-time monitoring of the AD-related microRNAs and also provide mechanistic insight into the early prognosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , MicroARNs , Ratones , Ratas , Animales , MicroARNs/genética , Enfermedad de Alzheimer/genética , Molibdeno , Transferencia Resonante de Energía de Fluorescencia , Biomarcadores
12.
Materials (Basel) ; 16(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36770291

RESUMEN

The application of aseismic materials in foundation engineering structures is an inevitable trend and research hotspot of earthquake resistance, especially in tunnel engineering. In this study, the pelican optimization algorithm (POA) is improved using the Latin hypercube sampling (LHS) method and the Chaotic mapping (CM) method to optimize the random forest (RF) model for predicting the aseismic performance of a novel aseismic rubber-concrete material. Seventy uniaxial compression tests and seventy impact tests were conducted to quantify this aseismic material performance, i.e., strength and energy absorption properties and four other artificial intelligence models were generated to compare the predictive performance with the proposed hybrid RF models. The performance evaluation results showed that the LHSPOA-RF model has the best prediction performance among all the models for predicting the strength and energy absorption property of this novel aseismic concrete material in both the training and testing phases (R2: 0.9800 and 0.9108, VAF: 98.0005% and 91.0880%, RMSE: 0.7057 and 1.9128, MAE: 0.4461 and 0.7364; R2: 0.9857 and 0.9065, VAF: 98.5909% and 91.3652%, RMSE: 0.5781 and 1.8814, MAE: 0.4233 and 0.9913). In addition, the sensitive analysis results indicated that the rubber and cement are the most important parameters for predicting the strength and energy absorption properties, respectively. Accordingly, the improved POA-RF model not only is proven as an effective method to predict the strength and energy absorption properties of aseismic materials, but also this hybrid model provides a new idea for assessing other aseismic performances in the field of tunnel engineering.

13.
ACS Appl Mater Interfaces ; 15(3): 4011-4020, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36631254

RESUMEN

Due to the high electrical conductivity and abundant redox active sites, bimetal sulfides are highly competitive anode materials for sodium storage with long-life and high-rate. Herein, a heterostructured metal sulfide (Bi2S3-CuS) with a carbon-based support is prepared by calcination and ion exchange methods. The synergistic effects of the heterostructure and defective structure provide facile diffusion channels, fast Na+ migration, and plentiful active sites for Na+, which reflect in the impressive electrochemical performance with a high reversible capacity of 592.2 mA h g-1 after 1000 cycles at 8 A g-1. Furthermore, the Na-ion full batteries exhibit an ultra-long cycling performance with a value of 216 mA h g-1 after 4000 cycles at 10 A g-1. Interestingly, the defective structure of Bi2S3 remains after cycling. Kinetic analyses and density functional theoretical calculations clarified that the heterointerfacial structure, especially on the interface containing sulfur defects in Bi2S3 of Bi2S3-CuS, could induce feasible ion adsorption and promote ion transfer, which lays the foundation for achieving ultrafast sodiation kinetics.

14.
ACS Omega ; 7(40): 35538-35544, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36249402

RESUMEN

Titanium dioxide (TiO2) micro-nanostructures are widely utilized in photochemical applications due to their unique band gaps and are of huge demand in scientific research and industrial manufacture. Herein, this work reports a controllable, facile, economical, and green solid-phase synthesis strategy to prepare TiO2 with governable morphologies containing 1D nanorods, 3D microbulks, and irregular thick plates. Specifically, Ti powders are transformed into TiO2 micro-nanostructures through dispersing them into a solid NaOH/KOH mixture with a low eutectic point, followed by grinding, heating, ion exchange, and calcination. As no solvents are utilized in the alkali treatment process, the usage of solvents is decreased and high vapor pressure is avoided. Moreover, the band gaps of TiO2 micro-nanostructures can be regulated from 3.02 to 3.34 eV through altering the synthetic parameters. Notably, the as-prepared TiO2 micro-nanostructures exhibit high photocatalytic activities in the degradation of rhodamine B and methylene blue under simulated solar light illumination. It is believed that the solid-phase synthesis strategy will be of huge demand for the synthesis of TiO2 micro-nanostructures.

15.
Theranostics ; 12(13): 5914-5930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966585

RESUMEN

Background: CRISPR-Cas12a has been integrated with nanomaterial-based optical techniques, such as surface-enhanced Raman scattering (SERS), to formulate a powerful amplification-free nucleic acid detection system. However, nanomaterials impose steric hindrance to limit the accessibility of CRISPR-Cas12a to the narrow gaps (SERS hot spots) among nanoparticles (NPs) for producing a significant change in signals after nucleic acid detection. Methods: To overcome this restriction, we specifically design chimeric DNA/RNA hairpins (displacers) that can be destabilized by activated CRISPR-Cas12a in the presence of target DNA, liberating excessive RNA that can disintegrate a core-satellite nanocluster via toehold-mediated strand displacement for orchestrating a promising "on-off" nucleic acid biosensor. The core-satellite nanocluster comprises a large gold nanoparticle (AuNP) core surrounded by small AuNPs with Raman tags via DNA hybridization as an ultrabright Raman reporter, and its disassembly leads to a drastic decrease of SERS intensity as signal readouts. We further introduce a magnetic core to the large AuNPs that can facilitate their separation from the disassembled nanostructures to suppress the background for improving detection sensitivity. Results: As a proof-of-concept study, our findings showed that the application of displacers was more effective in decreasing the SERS intensity of the system and attained a better limit of detection (LOD, 10 aM) than that by directly using activated CRISPR-Cas12a, with high selectivity and stability for nucleic acid detection. Introducing magnetic-responsive functionality to our system further improves the LOD to 1 aM. Conclusion: Our work not only offers a platform to sensitively and selectively probe nucleic acids without pre-amplification but also provides new insights into the design of the CRISPR-Cas12a/SERS integrated system to resolve the steric hindrance of nanomaterials for constructing biosensors.


Asunto(s)
Nanopartículas del Metal , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , ADN/química , Oro/química , Nanopartículas del Metal/química , ARN
16.
Adv Sci (Weinh) ; 9(24): e2201773, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35748163

RESUMEN

Rational design hybrid nanostructure photocatalysts with efficient charge separation and transfer, and good solar light harvesting ability have critical significance for achieving high solar-to-chemical conversion efficiency. Here a highly active and stable composite photocatalyst is reported by integrating ultrathin ZnIn2 S4 nanosheets on surface of hollow CdS cube to form the cube-in-cube structure. Experimental results combined with density functional theory calculations confirm that the Z-scheme ZnIn2 S4 /CdS heterojunction is formed, which highly boosts the charge separation and transfer under the local-electric-field at semiconductor/semiconductor interface, and thus prolongs their lifetimes. Moreover, such a structure affords the highly enhanced light-harvesting property. The optimized ZnIn2 S4 /CdS nanohybrids exhibit superior H2 generation rate under visible-light irradiation (λ ≥ 420 nm) with excellent photochemical stability during 20 h continuous operation.

17.
Aggregate (Hoboken) ; : e195, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35539693

RESUMEN

The ongoing outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has posed significant challenges in early viral diagnosis. Hence, it is urgently desirable to develop a rapid, inexpensive, and sensitive method to aid point-of-care SARS-CoV-2 detection. In this work, we report a highly sequence-specific biosensor based on nanocomposites with aggregation-induced emission luminogens (AIEgen)-labeled oligonucleotide probes on graphene oxide nanosheets (AIEgen@GO) for one step-detection of SARS-CoV-2-specific nucleic acid sequences (Orf1ab or N genes). A dual "turn-on" mechanism based on AIEgen@GO was established for viral nucleic acids detection. Here, the first-stage fluorescence recovery was due to dissociation of the AIEgen from GO surface in the presence of target viral nucleic acid, and the second-stage enhancement of AIE-based fluorescent signal was due to the formation of a nucleic acid duplex to restrict the intramolecular rotation of the AIEgen. Furthermore, the feasibility of our platform for diagnostic application was demonstrated by detecting SARS-CoV-2 virus plasmids containing both Orf1ab and N genes with rapid detection around 1 h and good sensitivity at pM level without amplification. Our platform shows great promise in assisting the initial rapid detection of the SARS-CoV-2 nucleic acid sequence before utilizing quantitative reverse transcription-polymerase chain reaction for second confirmation.

18.
Adv Sci (Weinh) ; 9(18): e2104780, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35474450

RESUMEN

Carbonaceous materials are considered strong candidates as anode materials for sodium-ion batteries (SIBs), which are expected to play an indispensable role in the carbon-neutral era. Herein, novel braided porous carbon fibres (BPCFs) are prepared using the chemical vapour deposition (CVD) method. The BPCFs possess interwoven porous structures and abundant vacancies. The growth mechanism of the BPCFs can be attributed to the polycrystalline transformation of the nanoporous copper catalyst in the early stage of CVD process. Density functional theory calculations suggest that the Na+ adsorption energies of the mono-vacancy edges of the BPCFs (-1.22 and -1.09 eV) are lower than that of an ideal graphene layer (-0.68 eV), clarifying in detail the adsorption-dominated sodium storage mechanism. Hence, the BPCFs as an anode material present an outstanding discharge capacity of 401 mAh g-1 at 0.1 A g-1 after 500 cycles. Remarkably, this BPCFs anode, under high-mass-loading of 5 mg cm-2, shows excellent long-term cycling ability with a reversible capacity of 201 mAh g-1 at 10 A g-1 over 1000 cycles. This study provided a novel strategy for the development of high-performance carbonaceous materials for SIBs.

19.
ACS Appl Mater Interfaces ; 14(3): 4714-4724, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081679

RESUMEN

Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.


Asunto(s)
Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Ácidos Nucleicos/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , COVID-19/genética , COVID-19/virología , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , Ácidos Nucleicos/química , SARS-CoV-2/química , SARS-CoV-2/genética , Plata/química , Espectrometría Raman/métodos
20.
Opt Express ; 29(13): 19853-19861, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266087

RESUMEN

Terahertz emission by ultrafast excitation of semiconductor/metal interfaces was found strongly enhanced by plasmon resonance. Here, a three-dimensional nanoporous gold (NPG) was used to form semiconductor/metal compound with cadmium telluride (CdTe). We investigated the specific impact of surface plasmon from randomly nanoporous structure in the ultrafast optoelectronic response for THz generation, and observed a THz amplitude enhancement around an order of magnitude from CdTe on NPG compared to that from CdTe on silicon. Moreover, the plasmon enhancement for THz emission from NPG is stronger than that from gold film, indicating that randomly nanoporous structure is also effective for plasmonic enhancement in THz band.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...