Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(12): 6372-6388, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38471112

RESUMEN

Oxidative damage to the kidneys is a primary factor in the occurrence of kidney stones. This study explores the inhibitory effect of Porphyra yezoensis polysaccharides (PYP) on oxalate-induced renal injury by detecting levels of oxidative damage, expression of adhesion molecules, and damage to intracellular organelles and revealed the molecular mechanism by molecular biology methods. Additionally, we validated the role of PYP in vivo using a crystallization model of hyperoxalate-induced rats. PYP effectively scavenged the overproduction of reactive oxygen species (ROS) in HK-2 cells, inhibited the adhesion of calcium oxalate (CaOx) crystals on the cell surface, unblocked the cell cycle, restored the depolarization of the mitochondrial membrane potential, and inhibited cell death. PYP upregulated the expression of antioxidant proteins, including Nrf2, HO-1, SOD, and CAT, while decreasing the expression of Keap-1, thereby activating the Keap1/Nrf2 signaling pathway. PYP inhibited CaOx deposition in renal tubules in the rat crystallization model, significantly reduced high oxalate-induced renal injury, decreased the levels of the cell surface adhesion proteins, improved renal function in rats, and ultimately inhibited the formation of kidney stones. Therefore, PYP, which has crystallization inhibition and antioxidant properties, may be a therapeutic option for the treatment of kidney stones.


Asunto(s)
Oxalato de Calcio , Algas Comestibles , Cálculos Renales , Porphyra , Ratas , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Riñón/metabolismo , Cálculos Renales/metabolismo , Estrés Oxidativo , Oxalatos/metabolismo , Oxalatos/farmacología , Polisacáridos/metabolismo
2.
ACS Omega ; 8(29): 25839-25849, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521646

RESUMEN

OBJECTIVE: Renal epithelial cell injury and cell-crystal interaction are closely related to kidney stone formation. METHODS: This study aims to explore the inhibition of endocytosis of nano-sized calcium oxalate monohydrate (nano-COM) crystals and the cell protection of corn silk polysaccharides (CCSPs) with different carboxyl contents (3.92, 7.75, 12.90, and 16.38%). The nano-COM crystals protected or unprotected by CCSPs were co-cultured with human renal proximal tubular epithelial cells (HK-2), and then the changes in the endocytosis of nano-COM and cell biochemical indicators were detected. RESULTS: CCSPs could inhibit the endocytosis of nano-COM by HK-2 cells and reduce the accumulation of nano-COM in the cells. Under the protection of CCSPs, cell morphology is restored, intracellular superoxide dismutase levels are increased, lipid peroxidation product malondialdehyde release is decreased, and mitochondrial membrane potential and lysosomal integrity are increased. The release of Ca2+ ions in the cell, the level of cell autophagy, and the rate of cell apoptosis and necrosis are also reduced. CCSPs with higher carboxyl content have better cell protection abilities. CONCLUSION: CCSPs could inhibit the endocytosis of nano-COM crystals and reduce cell oxidative damage. CCSP3, with the highest carboxyl content, shows the best biological activity.

3.
ACS Omega ; 8(8): 7816-7828, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36872978

RESUMEN

Background: The damage to renal tubular epithelial cells is closely related to the formation of kidney stones. At present, research on drugs that can protect cells from damage remains limited. Methods: This study aims to explore the protective effects of four different sulfate groups (-OSO3 -) of Laminaria polysaccharides (SLPs) on human kidney proximal tubular epithelial (HK-2) cells and determine the difference in the endocytosis of nano-sized calcium oxalate monohydrate (COM) crystals before and after protection. COM with a size of 230 ± 80 nm was used to damage HK-2 cells to establish a damage model. The protection capability of SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3 - contents of 0.73, 15, 23, and 31%, respectively, against COM crystal damage and the effect of SLPs on the endocytosis of COM crystals were studied. Results: Compared with that of the SLP-unprotected COM-injured group, the cell viability of the SLP-protected group was improved, healing capability was enhanced, cell morphology was restored, production of reactive oxygen species was reduced, mitochondrial membrane potential and lysosome integrity were increased, intracellular Ca2+ level and autophagy were decreased, cell mortality was reduced, and internalized COM crystals were lessened. The capability of SLPs to protect cells from damage and inhibit the endocytosis of crystals in cells enhanced with an increase in the -OSO3 - content of SLPs. Conclusions: SLPs with a high -OSO3 - content may become a potential green drug for preventing the formation of kidney stones.

4.
PeerJ ; 9: e11624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249496

RESUMEN

Terpenoid indole alkaloids (TIAs) include several valuable pharmaceuticals. As Catharanthus roseus remains the primary source of these TIA pharmaceuticals, several research groups have devoted substantial efforts to increase production of these compounds by C. roseus. Efforts to increase TIA production by overexpressing positive regulators of TIA biosynthetic genes have met with limited success. This limited success might be due to the fact that overexpression of several positive TIA regulators turns on expression of negative regulators of TIA biosynthetic genes. Consequently, a more effective approach for increasing expression of TIA biosynthetic genes might be to decrease expression of negative regulators of TIA biosynthetic genes. Towards this end, an RNAi construct was generated that expresses a hairpin RNA carrying nucleotide fragments from three negative transcriptional regulators of TIA genes, ZCT1, ZCT2 and ZCT3, under the control of a beta-estradiol inducible promoter. Transgenic C. roseus hairy root lines carrying this ZCT RNAi construct exhibit significant reductions in transcript levels of all three ZCT genes. Surprisingly, out of eight TIA biosynthetic genes analyzed, seven (CPR, LAMT, TDC, STR, 16OMT, D4H and DAT) exhibited decreased rather than increased transcript levels in response to reductions in ZCT transcript levels. The lone exception was T19H, which exhibited the expected negative correlation in transcript levels with transcript levels of all three ZCT genes. A possible explanation for the T19H expression pattern being the opposite of the expression patterns of the other TIA biosynthetic genes tested is that T19H shunts metabolites away from vindoline production whereas the products of the other genes tested shunt metabolites towards vindoline metabolism. Consequently, both increased expression of T19H and decreased expression of one or more of the other seven genes tested would be expected to have similar effects on flux through the TIA pathway. As T19H expression is lower in the ZCT RNAi hairy root lines than in the control hairy root line, the ZCTs could act directly to inhibit expression of T19H. In contrast, ZCT regulation of the other seven TIA biosynthetic genes tested is likely to occur indirectly, possibly by the ZCTs turning off expression of a negative transcriptional regulator of some TIA genes. In fact, transcript levels of a negative TIA transcriptional regulator, GBF1, exhibited a strong, and statistically significant, negative correlation with transcript levels of ZCT1, ZCT2 and ZCT3. Together, these findings suggest that the ZCTs repress expression of some TIA biosynthetic genes, but increase expression of other TIA biosynthetic genes, possibly by turning down expression of GBF1.

5.
Cancer Biomark ; 25(3): 259-273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31282408

RESUMEN

BACKGROUND: The expression of neuropilin-1 (NRP-1) in Epstein-Barr virus (EBV)-associated lymphomas and its relationships with clinicopathological parameters was investigated. METHODS: The researchers compared 111 cases of patients with lymphoma to 20 cases of reactive lymphoid hyperplasia. In situ hybridization was applied to observe the expression of EBV-encoded RNA (EBER) in lymphomas, and immunohistochemistry was used to detect the NRP-1 expression in lymphoma tissues and lymph node tissues with reactive hyperplasia. RESULTS: In these 111 cases, the EBER of 62 cases (55.9%) appeared positive. NRP-1 was relatively highly expressed in lymphomas (P= 0.019). Further, NRP-1 showed higher expression in lymphomas with positive EBER than in negative ones. A comprehensive analysis revealed that NRP-1 was differently expressed in NK/T-cell lymphoma, Hodgkin's lymphoma, diffuse large B-cell lymphoma, and anaplastic large cell lymphoma (P= 0.027). Moreover, highly expressed NRP-1 was found to be a useful independent prognostic factor in assessing overall survival and progression-free survival rates in cases of non-Hodgkin's lymphoma (NHL). CONCLUSIONS: NRP-1 exhibited higher expression in lymphomas, and it was positively expressed in EBV-positive lymphomas. Moreover, highly expressed NRP-1 can be used as an undesirable independent prognostic factor in NHL.


Asunto(s)
Biomarcadores de Tumor/genética , Infecciones por Virus de Epstein-Barr/genética , Linfoma/genética , Neuropilina-1/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Humanos , Inmunohistoquímica , Linfoma/clasificación , Linfoma/patología , Linfoma/virología , Linfoma Extranodal de Células NK-T/genética , Linfoma Extranodal de Células NK-T/patología , Linfoma Extranodal de Células NK-T/virología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/virología , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/patología , Linfoma de Células T Periférico/virología , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
6.
Int J Clin Exp Pathol ; 12(7): 2817-2818, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32256936

RESUMEN

[This corrects the article on p. 5547 in vol. 11, PMID: 31949642.].

7.
Am J Transl Res ; 9(5): 2088-2105, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559963

RESUMEN

BACKGROUND: MiR-101-3p has been reported to suppress invasion and metastasis in hepatocellular carcinoma (HCC) cells. However, the relevant mechanisms are still unclear. The research seeks to determine systematic value of miR-101-3p in HCC, and comprehensively summarize the predicted target genes as well as their potential function, pathways and networks in HCC. METHODS: The miR-101-1 profiles in 353 HCC patients from The Cancer Genome Atlas (TCGA) were analyzed. Meta-analysis was performed to estimate relationship of miR-101 (including precursor and mature miR-101) with clinical features and prognosis in HCC. Further, the promising targets of miR-101-3p were predicted and followed with Gene Ontology (GO), pathway and network analysis. In addition, the functional impact of miR-101-3p was confirmed with in vitro experiments in HCC cells. RESULTS: In TCGA data, low-expression of miR-101-1 might be a diagnostic (AUC: 0.924, 95% CI: 0.894-0.953) and prognostic (HR=1.55) marker for HCC. Down-regulated miR-101-1 also correlated with poor differentiation, advanced TNM stage, lymph node metastasis and high AFP level of HCC. Meta-analysis revealed that miR-101 down-regulation were associated with poor prognosis, high AFP level and advanced TNM stage of HCC. Moreover, 343 hub genes were filtered and miR-101-3p may be involved in intracellular signaling cascade, transcription, metabolism and cell proliferation. Focal adhesion and pathways in cancer were also significantly enriched. In vitro experiments demonstrated that miR-101-3p inhibited proliferation and promoted apoptosis in HCC cells. CONCLUSIONS: MiR-101-1 may be a prospective biomarker for diagnosis and prognosis of HCC. Potential targets of miR-101-3p could regulate genesis and development of HCC. The data offers insights into biological significances and promising targets of miR-101-3p for further investigation and potential therapies in HCC.

8.
Med Sci Monit ; 23: 1857-1871, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28416776

RESUMEN

BACKGROUND MiR-101-3p can promote apoptosis and inhibit proliferation, invasion, and metastasis in breast cancer (BC) cells. However, its mechanisms in BC are not fully understood. Therefore, a comprehensive analysis of the target genes, pathways, and networks of miR-101-3p in BC is necessary. MATERIAL AND METHODS The miR-101 profiles for 781 patients with BC from The Cancer Genome Atlas (TCGA) were analyzed. Gene expression profiling of GSE31397 with miR-101-3p transfected MCF-7 cells and scramble control cells was downloaded from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified. The potential genes targeted by miR-101-3p were also predicted. Gene Ontology (GO) and pathway and network analyses were constructed for the DEGs and predicted genes. RESULTS In the TCGA data, a low level of miR-101-2 expression might represent a diagnostic (AUC: 0.63) marker, and the miR-101-1 was a prognostic (HR=1.79) marker. MiR-101-1 was linked to the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), and miR-101-2 was associated with the tumor (T), lymph node (N), and metastasis (M) stages of BC. Moreover, 427 genes were selected from the 921 DEGs in GEO and the 7924 potential target genes from the prediction databases. These genes were related to transcription, metabolism, biosynthesis, and proliferation. The results were also significantly enriched in the VEGF, mTOR, focal adhesion, Wnt, and chemokine signaling pathways. CONCLUSIONS MiR-101-1 and miR-101-2 may be prospective biomarkers for the prognosis and diagnosis of BC, respectively, and are associated with diverse clinical parameters. The target genes of miR-101-3p regulate the development and progression of BC. These results provide insight into the pathogenic mechanism and potential therapies for BC.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Biología Computacional , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Células MCF-7 , MicroARNs/metabolismo , Pronóstico , Estudios Prospectivos , ARN Mensajero/genética , Receptores de Estrógenos/genética
9.
Int J Clin Exp Pathol ; 10(9): 9164-9176, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31966789

RESUMEN

MicroRNAs (miRNAs) are involved in the pathogenesis of diverse types of malignancies, including hepatocellular carcinoma (HCC). However, miR-365 has rarely been reported in HCC. The purpose of the current study was to identify the clinical relevance of miR-365 in HCC and examine the potential downstream signaling effectors.Using real-time RT-qPCR, we confirmed that miR-365 expression was markedly decreased in HCC tissues (3.5138 ± 2.2527) compared to that in paraneoplastic liver tissues (6.5950 ± 4.1230, P<0.001). Receiver operating characteristic curves to assess the diagnostic value of miR-365 in HCC demonstrated that the area under the curve was 0.757. Furthermore, down-regulation of miR-365 was remarkably correlated to the number of tumor nodes, status of metastasis, clinical TNM stage, portal vein tumor embolus and vaso-invasion. In addition to the clinical value of miR-365, a total of 238 downstream direct targets selected by online predictive algorithms and key genes generated from natural language processing and the Cancer Genome Atlas (TCGA) were pooled for bioinformatics analysis. These potential targets were mainly enriched in the Ras Pathway using PANTHER analysis and the 'Pathways in Cancer' using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In conclusion, down-regulated miR-365 may contribute to the progression and metastasis of HCC via targeting multiple signaling pathways, and miR-365 may act as a novel biomarker for HCC.

10.
Front Plant Sci ; 6: 818, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483828

RESUMEN

Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a ß-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

11.
Plant J ; 77(4): 577-88, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24320620

RESUMEN

Sugar signaling pathways have been evolutionarily conserved among eukaryotes and are postulated to help regulate plant growth, development and responses to environmental cues. Forward genetic screens have identified sugar signaling or response mutants. Here we report the identification and characterization of Arabidopsis thaliana sugar insensitive8 (sis8) mutants, which display a sugar-resistant seedling development phenotype. Unlike many other sugar insensitive mutants, sis8 mutants exhibit wild-type responses to the inhibitory effects of abscisic acid and paclobutrazol (an inhibitor of gibberellin biosynthesis) on seed germination. Positional cloning of the SIS8 gene revealed that it encodes a putative mitogen-activated protein kinase kinase kinase (MAPKKK; At1g73660). SIS8mRNA is expressed ubiquitously among Arabidopsis organs. A UDP-glucosyltransferase, UGT72E1 (At3g50740), was identified as an interacting partner of SIS8 based on a yeast two-hybrid screen and in planta bimolecular fluorescence complementation. Both SIS8-yellow fluorescent protein (YFP) and UGT72E1-YFP fusion proteins localize to the nucleus when transiently expressed in tobacco leaf cells. T-DNA insertions in At3g50740 cause a sugar-insensitive phenotype. These results indicate that SIS8, a putative MAPKKK, is a regulator of sugar response in Arabidopsis and interacts with a UDP-glucosyltransferase in the nucleus.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM/genética , Transducción de Señal , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Genes Reporteros , Germinación , Glucosa/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Mutagénesis Insercional , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Sacarosa/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Triazoles/farmacología
12.
BMC Plant Biol ; 13: 155, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24099172

RESUMEN

BACKGROUND: The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. RESULTS: Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. CONCLUSIONS: Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude.


Asunto(s)
Alcaloides/metabolismo , Catharanthus/metabolismo , Regulación de la Expresión Génica de las Plantas , Terpenos/metabolismo , Factores de Transcripción/metabolismo , Catharanthus/genética , Modelos Biológicos , Factores de Transcripción/genética
13.
Front Plant Sci ; 4: 245, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23882272

RESUMEN

Nutrient response networks are likely to have been among the first response networks to evolve, as the ability to sense and respond to the levels of available nutrients is critical for all organisms. Although several forward genetic screens have been successful in identifying components of plant sugar-response networks, many components remain to be identified. Toward this end, a reverse genetic screen was conducted in Arabidopsis thaliana to identify additional components of sugar-response networks. This screen was based on the rationale that some of the genes involved in sugar-response networks are likely to be themselves sugar regulated at the steady-state mRNA level and to encode proteins with activities commonly associated with response networks. This rationale was validated by the identification of hac1 mutants that are defective in sugar response. HAC1 encodes a histone acetyltransferase. Histone acetyltransferases increase transcription of specific genes by acetylating histones associated with those genes. Mutations in HAC1 also cause reduced fertility, a moderate degree of resistance to paclobutrazol and altered transcript levels of specific genes. Previous research has shown that hac1 mutants exhibit delayed flowering. The sugar-response and fertility defects of hac1 mutants may be partially explained by decreased expression of AtPV42a and AtPV42b, which are putative components of plant SnRK1 complexes. SnRK1 complexes have been shown to function as central regulators of plant nutrient and energy status. Involvement of a histone acetyltransferase in sugar response provides a possible mechanism whereby nutritional status could exert long-term effects on plant development and metabolism.

14.
Plant Physiol ; 152(4): 1889-900, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20147494

RESUMEN

Sugars, such as sucrose and glucose, have been implicated in the regulation of diverse developmental events in plants and other organisms. We isolated an Arabidopsis (Arabidopsis thaliana) mutant, sugar-insensitive3 (sis3), that is resistant to the inhibitory effects of high concentrations of exogenous glucose and sucrose on early seedling development. In contrast to wild-type plants, sis3 mutants develop green, expanded cotyledons and true leaves when sown on medium containing high concentrations (e.g. 270 mm) of sucrose. Unlike some other sugar response mutants, sis3 exhibits wild-type responses to the inhibitory effects of abscisic acid and paclobutrazol, a gibberellic acid biosynthesis inhibitor, on seed germination. Map-based cloning revealed that SIS3 encodes a RING finger protein. Complementation of the sis3-2 mutant with a genomic SIS3 clone restored sugar sensitivity of sis3-2, confirming the identity of the SIS3 gene. Biochemical analyses demonstrated that SIS3 is functional in an in vitro ubiquitination assay and that the RING motif is sufficient for its activity. Our results indicate that SIS3 encodes a ubiquitin E3 ligase that is a positive regulator of sugar signaling during early seedling development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Arabidopsis/genética , Clonación Molecular , Genes de Plantas
15.
BMC Plant Biol ; 8: 104, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18854047

RESUMEN

BACKGROUND: The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. RESULTS: A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis) mutants, both of which are also involved in abscisic acid (ABA) biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. CONCLUSION: Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in different abi3 mutants. Expression profiling revealed a potentially novel regulation of auxin metabolism and transport in an ABA deficient mutant, sis7-1/nced3-4/sto1-4.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosa/metabolismo , Oxigenasas/genética , Sacarosa/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , ADN Bacteriano/genética , ADN de Plantas/genética , Dioxigenasas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Mutagénesis Insercional , Mutación , Oxigenasas/metabolismo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo , Transcripción Genética
16.
Planta ; 217(1): 11-20, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12721844

RESUMEN

The roots of alternate-bearing citrus (Murcott, a Citrus reticulata hybrid) trees undergo extreme fluctuations of carbohydrate abundance and starvation. Using this system, we investigated the effect of root carbohydrate (total soluble sugar, sucrose and starch) depletion on carbohydrate-related gene expression. A series of genes, including those coding for starch phosphorylase ( STPH-L and STPH-H), ADP-glucose pyrophosphorylase, small subunit ( Agps), R1, plastidic ADP/ATP transporter ( AATP), phosphoglucomutase ( PGM-P and PGM-C), sucrose synthase ( CitSuS1 and CitSuSA), sucrose transporter ( SUT1 and SUT2), hexokinase ( HK) and alpha-amylase ( alpha-AMY), have been isolated and their expression analyzed. The genes were found to respond differentially to carbohydrate depletion. STPH-L, STPH-H, Agps, R1, AATP, PGM-P, PGM-C, CitSuS1 and HK were down-regulated while SUT1 and alpha-AMY were up-regulated during carbohydrate depletion. Two other genes, CitSuSA and SUT2, did not respond to carbohydrate depletion. Fruit removal, which interrupted the carbohydrate depletion induced by heavy fruiting, reversed these gene expression patterns. Trunk girdling and whole-plant darkening treatments, which brought about root carbohydrate depletion, induced the same changes in gene expression obtained in the alternate-bearing system. The possible roles of the up- and down-regulated genes in the metabolism of carbohydrate-depleted citrus roots are discussed. Although the specific signals involved have not been determined, the results support the feast/famine hypothesis of carbohydrate regulation proposed by Koch [K.E. Koch (1996) Annu Rev Plant Physiol Plant Mol Biol 47:509-540].


Asunto(s)
Metabolismo de los Hidratos de Carbono , Citrus/metabolismo , Raíces de Plantas/metabolismo , Citrus/genética , Oscuridad , Enzimas/genética , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Rastreo , Raíces de Plantas/genética , Raíces de Plantas/ultraestructura , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo
17.
Ann Bot ; 92(1): 137-43, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12763756

RESUMEN

Effects of girdling on carbohydrate status and carbohydrate-related gene expression in citrus trees were investigated. Alternate-bearing 'Murcott' (a Citrus reticulata hybrid of unknown origin) trees were girdled during autumn (25 Sep. 2001) and examined 10 weeks later. Girdling brought about carbohydrate (soluble sugar and starch) accumulation in leaves and shoot bark above the girdle, in trees during their fruitless, 'off' year. Trees during their heavy fruit load, 'on' year did not accumulate carbohydrates above the girdle due to the high demand for carbohydrates by the developing fruit. Girdling caused a strong decline in soluble sugar and starch concentrations in organs below the girdle (roots), in both 'on' and 'off' trees. Expression of STPH-L and STPH-H (two isoforms of starch phosphorylase), Agps (ADP-glucose pyrophosphorylase, small subunit), AATP (plastidic ADP/ATP transporter), PGM-C (phosphoglucomutase) and CitSuS1 (sucrose synthase), all of which are associated with starch accumulation, was studied. It was found that gene expression is related to starch accumulation in all 'off' tree organs. RNA levels of all the genes examined were high in leaves and bark that accumulated high concentrations of starch, and low in roots with declining starch concentrations. It may be hypothesized that changes in specific sugars signal the up- and down-regulation of genes involved in starch synthesis.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Citrus/genética , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Corteza de la Planta/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Regulación hacia Abajo , Corteza de la Planta/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/análisis , ARN de Planta/genética , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...