Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Plant Physiol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875157

RESUMEN

Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis 'Hirado Buntan', a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.

2.
Dalton Trans ; 53(13): 6041-6049, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38470841

RESUMEN

Exploiting effective, stable, and cost-efficient electrocatalysts for the water oxidation reaction is highly desirable for renewable energy conversion techniques. Constructional design and compositional manipulation are widely used approaches to efficaciously boost the electrocatalytic performance. Herein, we designed a NiFe-bimetallic sulfide/N-doped carbon composite via a two-step thermal treatment of Prussian blue analogues/cellulose nanofibers (PBA/CNFs) film. The NiFe-bimetallic sulfide/N-doped carbon composite displayed enhanced OER performance in an alkaline environment, with an overpotential of 282 mV at 10 mA cm-2, a Tafel slope of 59.71 mV dec-1, and good stability, making the composite a candidate electrocatalyst for OER-related energy equipment. The introduction of CNFs in the precursor prevented the aggregation of PBA nanoparticles (NPs), exposed more active sites, and the resulting carbon substrate enhanced the electroconductivity of the composite. Moreover, the synergistic effect of Ni and Fe in the bimetallic sulfide could modulate the configuration of electrons, enrich the catalytically active sites, and augment the electric conductivity, thus ameliorating the OER performance. This study broadens the application of MOF-CNF composites to construct hierarchical structures of metal compounds and provides some thoughts for the development of cost-effective precious-metal-free catalysts for electrocatalysis.

3.
Adv Sci (Weinh) ; 11(22): e2310159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514904

RESUMEN

Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1ß is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1ß does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1ß/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1ß level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1ß or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.


Asunto(s)
Empalme Alternativo , Malatos , Malus , Malatos/metabolismo , Empalme Alternativo/genética , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vacuolas/metabolismo , Vacuolas/genética , Regulación de la Expresión Génica de las Plantas/genética
4.
Hortic Res ; 11(1): uhad249, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288255

RESUMEN

Vacuole largely dictates the fruit taste and flavor, as most of the sugars and organic acids are stored in the vacuoles of the fruit. However, difficulties associated with vacuole separation severely hinder identification and characterization of vacuolar proteins in fruit species. In this study, we established an effective approach for separating vacuoles and successfully purified vacuolar protein from six types of citrus fruit with varying patterns of sugar and organic acid contents. By using label-free LC-MS/MS proteomic analysis, 1443 core proteins were found to be associated with the essential functions of vacuole in citrus fruit. Correlation analysis of metabolite concentration with proteomic data revealed a transporter system for the accumulation of organic acid and soluble sugars in citrus. Furthermore, we characterized the physiological roles of selected key tonoplast transporters, ABCG15, Dict2.1, TMT2, and STP7 in the accumulation of citric acid and sugars. These findings provide a novel perspective and practical solution for investigating the transporters underlying the formation of citrus taste and flavor.

5.
Nat Genet ; 55(11): 1964-1975, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783780

RESUMEN

The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Ácido Cítrico/metabolismo , Frutas/genética , China
6.
Plant J ; 115(2): 434-451, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37025007

RESUMEN

Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors play important roles in plant growth, development and abiotic stress responses. However, how PLATZ influences plant drought tolerance remains poorly understood. The present study showed that PLATZ4 increased drought tolerance in Arabidopsis thaliana by causing stomatal closure. Transcriptional profiling analysis revealed that PLATZ4 affected the expression of a set of genes involved in water and ion transport, antioxidant metabolism, small peptides and abscisic acid (ABA) signaling. Among these genes, the direct binding of PLATZ4 to the A/T-rich sequences in the plasma membrane intrinsic protein 2;8 (PIP2;8) promoter was identified. PIP2;8 consistently reduced drought tolerance in Arabidopsis through inhibiting stomatal closure. PIP2;8 was localized in the plasma membrane, exhibited water channel activity in Xenopus laevis oocytes and acted epistatically to PLATZ4 in regulating the drought stress response in Arabidopsis. PLATZ4 increased ABA sensitivity through upregulating the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4 and ABI5. The transcripts of PLATZ4 were induced to high levels in vegetative seedlings under drought and ABA treatments within 6 and 3 h, respectively. Collectively, these findings reveal that PLATZ4 positively influences plant drought tolerance through regulating the expression of PIP2;8 and genes involved in ABA signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Resistencia a la Sequía , Acuaporina 2/genética , Acuaporina 2/metabolismo , Plantas Modificadas Genéticamente/genética , Sequías , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Estomas de Plantas/fisiología
7.
Sci Rep ; 13(1): 406, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624131

RESUMEN

This study investigated whether the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) features could be used as potentially neurological markers to identify chronic insomnia (CI) using resting-state functional MRI and machine learning method logistic regression (LR). This study included 49 CI patients and 47 healthy controls (HC). Voxel-wise features, including the amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC), were extracted from resting-state functional magnetic resonance brain images. Then, we divided the data into two independent cohorts for training (44 CI patients and 42 HC patients), and independent validation (5 CI patients and 5 HC patients) by using logistic regression. The model was evaluated using 20 rounds of fivefold cross­validation for training. In particular, a two-sample t-test (GRF corrected, p-voxel < 0.001, p-cluster < 0.05) was used for feature selection during the model training. Finally, single­shot testing of the final model was performed on the independent validation cohort. A correlation analysis (Bonferroni correction, p < 0.05/4) was also conducted to determine whether the features contributing to the prediction were correlated with clinical characteristics, including the Insomnia Severity Index (ISI), Pittsburgh sleep quality index (PSQI), self-rating anxiety scale (SAS), and self-rating depression scale (SDS). Results showed that resting-state features had a discrimination accuracy of 86.40%, with a sensitivity of 93.00% and specificity of 79.80%. The area under the curve (AUC) was 0.89 (all [Formula: see text]< 0.001). The ALFF and FC features showed significant differences between the CI patients and HC. The regions contributing to the prediction mainly included the anterior cingulate, prefrontal cortex, orbital part of the frontal lobe, angular gyrus, cingulate gyrus, praecuneus, parietal lobe, temporal gyrus, superior temporal gyrus, and middle temporal gyrus. Furthermore, some specific functional connectivity among related regions was positively correlated with the ISI, and also negatively related to the SDS in correlation analysis. Our current study suggested that ALFF and FC in the regions contributing to diagnostic identification might serve as potential neuromarkers for CI.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Modelos Logísticos , Encéfalo/patología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
8.
Plant Physiol ; 191(1): 591-609, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36102815

RESUMEN

ß-Amylase (BAM)-mediated starch degradation is a main source of soluble sugars that help plants adapt to environmental stresses. Here, we demonstrate that dehydration-induced expression of PtrBAM3 in trifoliate orange (Poncirus trifoliata (L.) Raf.) functions positively in drought tolerance via modulation of starch catabolism. Two transcription factors, PtrABF4 (P. trifoliata abscisic acid-responsive element-binding factor 4) and PtrABR1 (P. trifoliata ABA repressor 1), were identified as upstream transcriptional activators of PtrBAM3 through yeast one-hybrid library screening and protein-DNA interaction assays. Both PtrABF4 and PtrABR1 played a positive role in plant drought tolerance by modulating soluble sugar accumulation derived from BAM3-mediated starch decomposition. In addition, PtrABF4 could directly regulate PtrABR1 expression by binding to its promoter, leading to a regulatory cascade to reinforce the activation of PtrBAM3. Moreover, PtrABF4 physically interacted with PtrABR1 to form a protein complex that further promoted the transcriptional regulation of PtrBAM3. Taken together, our finding reveals that a transcriptional cascade composed of ABF4 and ABR1 works synergistically to upregulate BAM3 expression and starch catabolism in response to drought condition. The results shed light on the understanding of the regulatory molecular mechanisms underlying BAM-mediated soluble sugar accumulation for rendering drought tolerance in plants.


Asunto(s)
Factores de Transcripción , beta-Amilasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Resistencia a la Sequía , Amilasas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Carbohidratos , Sequías , Azúcares , beta-Amilasa/genética , Almidón/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
9.
New Phytol ; 238(1): 216-236, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36210523

RESUMEN

Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosforilación , Putrescina/metabolismo , Arabidopsis/genética , Sequías , Plantas Modificadas Genéticamente/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
10.
Front Endocrinol (Lausanne) ; 13: 1002916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523601

RESUMEN

There is a continuously rising incidence of non-alcoholic fatty liver disease (NAFLD) around the world, which parallels the increasing incidence of metabolic diseases. NAFLD is a range of liver conditions that contains simple non-alcoholic fatty liver and advanced non-alcoholic steatohepatitis. In serious cases, NAFLD may develop into cirrhosis or even liver cancer. NAFLD has an intense relationship with metabolic syndrome, type 2 diabetes mellitus. It is known that gut microbiota, and functional molecules such as adenosine monophosphate-activated protein kinase JNK, and peroxisome proliferator-activated receptors (PPARs) in progressing and treating NAFLD. Traditionally, the conventional and effective therapeutic strategy is lifestyle intervention. Nowadays, new medicines targeting specific molecules, such as farnesoid X receptor, PPARs, and GLP-1 receptor, have been discovered and shown beneficial effects on patients with NAFLD. In this article, we focus on the molecular mechanisms and therapeutic approaches to NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Cirrosis Hepática/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/terapia , Receptores Activados del Proliferador del Peroxisoma/efectos de los fármacos
11.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502195

RESUMEN

Piezoelectric vibration energy harvester (PVEH) is a promising device for sustainable power supply of wireless sensor nodes (WSNs). PVEH is resonant and generates power under constant frequency vibration excitation of mechanical equipment. However, it cannot output high power through off-resonance if it has frequency offset in manufacturing, assembly and use. To address this issue, this paper designs and optimizes a PVEH to harvest power specifically from grid transformer vibration at 100 Hz with high power density of 5.28 µWmm-3g-2. Some resonant frequency modulation methods of PVEH are discussed by theoretical analysis and experiment, such as load impedance, additional mass, glue filling, axial and transverse magnetic force frequency modulation. Finally, efficient energy harvesting of 6.1 V output in 0.0226 g acceleration is tested in grid transformer reactor field application. This research has practical value for the design and optimization process of tunable PVEH for a specific vibration source.


Asunto(s)
Modalidades de Fisioterapia , Vibración , Fenómenos Físicos , Aceleración , Comercio
12.
J Integr Plant Biol ; 64(12): 2327-2343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36218272

RESUMEN

Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.


Asunto(s)
Poncirus , Poncirus/genética , Poncirus/metabolismo , Tetraploidía , Metilación , Ácidos Grasos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Frío
13.
Nanoscale Adv ; 4(16): 3323-3329, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131715

RESUMEN

Voltage controlled magnetic anisotropy (VCMA) has been considered as an effective method in traditional magnetic devices with lower power consumption. In this article, we have investigated the dual-axis control of magnetic anisotropy in Co2MnSi/GaAs/PZT hybrid heterostructures through piezo-voltage-induced strain using longitudinal magneto-optical Kerr effect (LMOKE) microscopy. The major modification of in-plane magnetic anisotropy of the Co2MnSi thin film is controlled obviously by the piezo-voltages of the lead zirconate titanate (PZT) piezotransducer, accompanied by the coercivity field and magnetocrystalline anisotropy significantly manipulated. Because in-plane cubic magnetic anisotropy and uniaxial magnetic anisotropy coexist in the Co2MnSi thin film, the initial double easy axes of cubic split to an easiest axis (square loop) and an easier axis (two-step loop). While the stress direction is parallel to the [1-10] easiest axis (sample I), the square loop of the [1-10] direction could transform to a two-step loop under the negative piezo-voltages (compressed state). At the same time, the initial two-step loop of the [110] axis simultaneously changes to a square loop (the easiest axis). Otherwise, we designed and fabricated the sample II in which the PZT stress is parallel to the [110] two-step axis. The phenomenon of VCMA was also obtained along the [110] and [1-10] directions. However, the manipulated results of sample II were in contrast to those of the sample I under the piezo-voltages. Thus, an effective dual-axis regulation of the in-plane magnetization rotation was demonstrated in this work. Such a finding proposes a more optimized method for the magnetic logic gates and memories based on voltage-controlled magnetic anisotropy in the future.

14.
Nat Sci Sleep ; 14: 1341-1350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942365

RESUMEN

Introduction: In recent years, people have gained a profound understanding of chronic insomnia disorder (CID), but the pathophysiological mechanism of CID is still unclear. There is some evidence that the locus coeruleus (LC) is involved in the regulation of wakefulness in CID, but there have been few studies using brain functional imaging. The purpose of this study was to evaluate the resting-state functional connectivity (FC) between the LC and other brain voxels in CID and whether these abnormal FC are involved in the regulation of wakefulness. Methods: A total of 49 patients with chronic insomnia disorder and 47 healthy controls (HC) matched for gender, age, and education were examined with rs-fMRI in this study. The LC was selected as the region of interest, and then seed-based analysis was conducted on the LC and other voxels to obtain the brain regions with abnormal FC. The correlation between the FC value of the abnormal connection area and the clinical scale score was analyzed. Results: Compared with the HC, the FC between the LC and right precuneus, right posterior cingulate cortex, left middle temporal gyrus, left calcarine, and right superior orbitofrontal cortex was significantly enhanced (p < 0.05, FDR correction), and the functional connectivity signal value between the locus coeruleus and left middle temporal gyrus was positively correlated with the Self-Rating Depression Scale (p = 0.021). Conclusion: The abnormal FC between the LC and multiple brain regions may contribute to a better understanding of the neurobiological mechanism of CID.

15.
Genes (Basel) ; 13(7)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35885900

RESUMEN

The uptake and transportation of nitrate play a crucial role in plant growth and development. These processes mostly depend on nitrate transporters (NRT), which guarantee the supplement of nutrition in the plant. In this study, genes encoding NRT with Major Facilitator Superfamily (MFS) domain were identified in trifoliate orange (Poncirus trifoliata (L.) Raf.). Totally, 56 NRT1s, 6 NRT2s, and 2 NAR2s were explored. The bioinformation analysis, including protein characteristics, conserved domain, motif, phylogenetic relationship, cis-acting element, and synteny correlation, indicated the evolutionary conservation and functional diversity of NRT genes. Additionally, expression profiles of PtrNRTs in different tissues demonstrated that NRT genes possessed spatio-temporal expression specificity. Further, the salt condition was certified to induce the expression of some NRT members, like PtrNPF2.1, PtrNPF7.4, and PtrNAR2.1, proposing the potential role of these NRTs in salt stress response. The identification of NRT genes and the expression pattern analysis in various tissues and salt stress lay a foundation for future research between nitrogen transport and salt resistance in P. trifoliata.


Asunto(s)
Citrus , Poncirus , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transportadores de Nitrato , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poncirus/genética , Estrés Salino/genética
16.
New Phytol ; 235(6): 2331-2349, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35695205

RESUMEN

Invertase (INV)-mediated sucrose (Suc) hydrolysis, leading to the irreversible production of glucose (Glc) and fructose (Frc), plays an essential role in abiotic stress tolerance of plants. However, the regulatory network associated with the Suc catabolism in response to cold environment remains largely elusive. Herein, the cold-induced alkaline/neutral INV gene PtrA/NINV7 of trifoliate orange (Poncirus trifoliata (L.) Raf.) was shown to function in cold tolerance via mediating the Suc hydrolysis. Meanwhile, a nuclear matrix-associated region containing A/T-rich sequences within its promoter was indispensable for the cold induction of PtrA/NINV7. Two AT-Hook Motif Containing Nuclear Localized (AHL) proteins, PtrAHL14 and PtrAHL17, were identified as upstream transcriptional activators of PtrA/NINV7 by interacting with the A/T-rich motifs. PtrAHL14 and PtrAHL17 function positively in the cold tolerance by modulating PtrA/NINV7-mediated Suc catabolism. Furthermore, both PtrAHL14 and PtrAHL17 could form homo- and heterodimers between each other, and interacted with two histone acetyltransferases (HATs), GCN5 and TAF1, leading to elevated histone3 acetylation level under the cold stress. Taken together, our findings unraveled a new cold-responsive signaling module (AHL14/17-HATs-A/NINV7) for orchestration of Suc catabolism and cold tolerance, which shed light on the molecular mechanisms underlying Suc catabolism catalyzed by A/NINVs under cold stress.


Asunto(s)
Citrus , Poncirus , Citrus/genética , Frío , Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poncirus/genética , Poncirus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sacarosa/metabolismo , beta-Fructofuranosidasa/metabolismo
17.
New Phytol ; 236(2): 495-511, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751377

RESUMEN

Initially discovered in yeast, mitochondrial retrograde signalling has long been recognised as an essential in the perception of stress by eukaryotes. However, how to maintain the optimal amplitude and duration of its activation under natural stress conditions remains elusive in plants. Here, we show that TaSRO1, a major contributor to the agronomic performance of bread wheat plants exposed to salinity stress, interacted with a transmembrane domain-containing NAC transcription factor TaSIP1, which could translocate from the endoplasmic reticulum (ER) into the nucleus and activate some mitochondrial dysfunction stimulon (MDS) genes. Overexpression of TaSIP1 and TaSIP1-∆C (a form lacking the transmembrane domain) in wheat both compromised the plants' tolerance of salinity stress, highlighting the importance of precise regulation of this signal cascade during salinity stress. The interaction of TaSRO1/TaSIP1, in the cytoplasm, arrested more TaSIP1 on the membrane of ER, and in the nucleus, attenuated the trans-activation activity of TaSIP1, therefore reducing the TaSIP1-mediated activation of MDS genes. Moreover, the overexpression of TaSRO1 rescued the inferior phenotype induced by TaSIP1 overexpression. Our study provides an orchestrating mechanism executed by the TaSRO1-TaSIP1 module that balances the growth and stress response via fine tuning the level of mitochondria retrograde signalling.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Salinidad , Tolerancia a la Sal/genética , Factores de Transcripción/metabolismo , Triticum/metabolismo
18.
Inorg Chem ; 61(18): 6943-6952, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35485722

RESUMEN

Lead (Pb)-free halide hybrid materials have received a great deal of attention because of their potential in optoelectronic applications. However, heteroatom-based amine lead-free tin halide hybrid single crystals have not been well investigated yet. Detailed synthetic processes, growth, crystal structures, and stability of (ACH2CH2NH3)2SnBr6 (A = OH or SH) and (BCH2CH2NH3)2SnI4 (B = I or SH) single crystals were investigated. Interestingly, (IH3NCH2CH2SSCH2CH2NH3)2HPO3 exhibited orange-red photoluminescence (PL) at about 620 nm with an average PL lifetime of about 912 ns. (HSCH2CH2NH3)2SnI4 single crystals exhibited a PL peak at 620 nm with an average PL lifetime of about 0.607 ns. More importantly, (HSCH2CH2NH3)2SnI4 single crystals exhibited reversible red-black color transformations when exposed to a H3PO2 solution and an ambient atmosphere, which was attributed to oxidation from Sn2+ to Sn4+, rather than from I- to I3- (I2). The intriguing characteristics should provide guidance for further optoelectronic applications of these Pb-free halide hybrid materials.

19.
Plant J ; 110(6): 1603-1618, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35384109

RESUMEN

The phytohormone abscisic acid (ABA) regulates ion channel activity and stomatal movement in response to drought stress. Cellular ABA levels change depending on cellular and environmental conditions via modulation of its biosynthesis, catabolism and transport. Although factors involved in ABA biosynthesis and degradation have been studied extensively, how ABA transporters are modulated to fine-tune ABA levels, especially under drought stress, remains elusive. Here, we show that Arabidopsis thaliana SORTING NEXIN 2 (SNX2) proteins play a critical role in endosomal trafficking of the ABA exporter ATP BINDING CASETTE G25 (ABCG25) via direct interaction at endosomes, leading to its degradation in the vacuole. In agreement, snx2a and snx2b mutant plants showed enhanced recycling of GFP-ABCG25 from early endosomes to the plasma membrane and higher accumulation of GFP-ABCG25. Phenotypically, snx2a and snx2b plants were highly sensitive to exogenous ABA and displayed enhanced ABA-mediated inhibition of inward K+ currents and ABA-mediated activation of slow anion currents in guard cells, resulting in an increased tolerance to drought stress. Based on these results, we propose that SNX2 proteins play a crucial role in stomatal movement and tolerance to drought stress by modulating the endosomal trafficking of ABCG25 and thus cellular ABA levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Estomas de Plantas/fisiología
20.
J Alzheimers Dis ; 87(2): 665-673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342086

RESUMEN

BACKGROUND: Some observational studies indicated the associations of relative carbohydrate, sugar, fat, and protein intake and Alzheimer's disease (AD). But it remains unclear whether the associations are causal. OBJECTIVE: This study aimed to identify the effects of relative carbohydrate, sugar, fat, and protein intake in the diet on AD. METHODS: A two-sample Mendelian randomization was employed. Finally, 14 independent lead SNPs remained in the Social Science Genetic Association Consortium. These SNPs of relative carbohydrate, sugar, fat, and protein intake at the level of genome-wide significance (p < 5×10-8) were used as instrumental variables. The summary data for AD were acquired from the International Genomics of Alzheimer's Project with a total of 54,162 individuals (17,008 AD patients and 37,154 control participants). RESULTS: This two-sample Mendelian randomization indicated that increased relative protein intake (per 1 standard deviation) causally decreased the AD risk (OR = 0.48, 95% CI: 0.24-0.95, p = 0.036), and increased relative fat intake may decrease the risk of AD (OR = 0.22, 95% CI: 0.06-0.86, p = 0.029). No statistical significance with AD risk was seen for relative carbohydrate or relative sugar intake. CONCLUSION: A higher relative intake of protein can causally reduce the risk of AD in the elderly. Additionally, a higher relative intake of fat may be protective against AD. No evidence showed that AD was associated with relative carbohydrate and sugar intake.


Asunto(s)
Enfermedad de Alzheimer , Análisis de la Aleatorización Mendeliana , Anciano , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Carbohidratos , Estudio de Asociación del Genoma Completo , Humanos , Nutrientes , Polimorfismo de Nucleótido Simple/genética , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...