Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
J Control Release ; 370: 438-452, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38701885

RESUMEN

Triggering pyroptosis is a major new weathervane for activating tumor immune response. However, biodegradable pyroptosis inducers for the safe and efficient treatment of tumors are still scarce. Herein, a novel tumor microenvironment (TME)-responsive activation nanoneedle for pyroptosis induction, copper-tannic acid (CuTA), was synthesized and combined with the sonosensitizer Chlorin e6 (Ce6) to form a pyroptosis amplifier (CuTA-Ce6) for dual activation and amplification of pyroptosis by exogenous ultrasound (US) and TME. It was demonstrated that Ce6-triggered sonodynamic therapy (SDT) further enhanced the cellular pyroptosis caused by CuTA, activating the body to develop a powerful anti-tumor immune response. Concretely, CuTA nanoneedles with quadruple mimetic enzyme activity could be activated to an "active" state in the TME, destroying the antioxidant defense system of the tumor cells through self-destructive degradation, breaking the "immunosilent" TME, and thus realizing the pyroptosis-mediated immunotherapy with fewer systemic side effects. Considering the outstanding oxygen-producing capacity of CuTA and the distinctive advantages of US, the sonosensitizer Ce6 was attached to CuTA via an amide reaction, which further amplified the pyroptosis and sensitized pyroptosis-induced immunotherapy with the two-pronged strategy of CuTA enzyme-catalyzed cascade and US-driven SDT pathway to generate a "reactive oxygen species (ROS) storm". Conclusively, this work provided a representative paradigm for achieving safe, reliable and efficient pyroptosis, which was further enhanced by SDT for more robust immunotherapy.

2.
Front Oncol ; 14: 1369829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737899

RESUMEN

Background: Obstruction is a common complication of advanced colorectal cancer. This study was aimed at investigating the safety, efficacy, and feasibility of transcatheter arterial perfusion chemotherapy combined with lipiodol chemoembolization for treating advanced colorectal cancer complicated by obstruction. Patients and methods: This retrospective analysis was conducted using clinical data of patients with advanced colorectal cancer who received arterial infusion chemotherapy combined with lipiodol chemoembolization treatment at our center. Treatment efficacy was evaluated in terms of obstruction-free survival and overall survival, and treatment complications were monitored. Results: Fifty-four patients with colorectal cancer complicated by obstruction were included. All patients successfully underwent transcatheter arterial infusion combined with lipiodol chemoembolization treatment. The average lipiodol dose administered was 2.62 ± 1.45 ml (0.5-5.5 ml). No serious complications such as perforation or tumor dissemination occurred. The clinical success rate was 83.3% (45/54). One month after treatment, the objective response rate (ORR) and disease control rate (DCR) were 66.67% and 88.9%, respectively. The median obstruction-free survival was 5.0 months. No serious adverse events occurred. As of the last follow-up, 6 patients survived, 44 died, and 4 were lost to follow-up. Conclusion: Our findings revealed that transcatheter arterial infusion chemotherapy combined with lipiodol chemoembolization is safe and effective for treating advanced colorectal cancer complicated by obstruction. It may serve as a new treatment strategy for patients with advanced colorectal cancer complicated by obstruction.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38742307

RESUMEN

Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) has been widely used in the treatment of a variety of tumors. Compared with other therapeutic methods, this treatment has the advantages of high efficiency, strong penetration, and controllable treatment range. PDT kills tumors by generating a large amount of reactive oxygen species (ROS), which causes oxidative stress in the tumor. However, this killing effect is significantly inhibited by the tumor's own resistance to ROS. This is because tumors can either deplete ROS by high concentration of glutathione (GSH) or stimulate autophagy to eliminate ROS-generated damage. Furthermore, the tumor can also consume ROS through the lactic acid metabolic pathway, ultimately hindering therapeutic progress. To address this conundrum, we developed a UCNP-based nanocomposite for enhanced PDT by reducing tumor ROS resistance. First, Ce6-doped SiO2 encapsulated UCNPs to ensure the efficient energy transfer between UCNPs and Ce6. Then, the biodegradable tetrasulfide bond-bridged mesoporous organosilicon (MON) was coated on the outer layer to load chloroquine (CQ) and α-cyano4-hydroxycinnamic acid (CHCA). Finally, hyaluronic acid was utilized to modify the nanomaterials to realize an active-targeting ability. The obtained final product was abbreviated as UCNPs@MON@CQ/CHCA@HA. Under 980 nm laser irradiation, upconverted red light from UCNPs excited Ce6 to produce a large amount of singlet oxygen (1O2), thus achieving efficient PDT. The loaded CQ and CHCA in MON achieved multichannel enhancement of PDT. Specifically, CQ blocked the autophagy process of tumor cells, and CHCA inhibited the uptake of lactic acid by tumor cells. In addition, the coated MON consumed a high level of intracellular GSH. In this way, these three functions complemented each other, just as the "three musketeers" punctured ROS resistance in tumors from multiple angles, and both in vitro and in vivo experiments had demonstrated the elevated PDT efficacy of nanomaterials.

4.
Mar Drugs ; 22(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667801

RESUMEN

Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.


Asunto(s)
Sulfatos de Condroitina , Oligosacáridos , Pepinos de Mar , Sulfatos de Condroitina/química , Sulfatos de Condroitina/síntesis química , Sulfatos de Condroitina/farmacología , Animales , Oligosacáridos/síntesis química , Oligosacáridos/química , Pepinos de Mar/química , Glicosilación , Fucosa/química , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Relación Estructura-Actividad , Acetilgalactosamina/química , Acetilgalactosamina/análogos & derivados
5.
Adv Mater ; : e2400845, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651256

RESUMEN

Topological electronic transition is the very promising strategy for achieving high band degeneracy (NV) and for optimizing thermoelectric performance. Herein, this work verifies in p-type Mg3Sb2- xBix that topological electronic transition could be the key mechanism responsible for elevating the NV of valence band edge from 1 to 6, leading to much improved thermoelectric performance. Through comprehensive spectroscopy characterizations and theoretical calculations of electronic structures, the topological electronic transition from trivial semiconductor is unambiguously demonstrated to topological semimetal of Mg3Sb2- xBix with increasing the Bi content, due to the strong spin-orbit coupling of Bi and the band inversion. The distinct evolution of Fermi surface configuration and the multivalley valence band edge with NV of 6 are discovered in the Bi-rich compositions, while a peculiar two-step band inversion is revealed for the first time in the end compound Mg3Bi2. As a result, the optimal p-type Mg3Sb0.5Bi1.5 simultaneously obtains a positive bandgap and high NV of 6, and thus acquires the largest thermoelectric power factor of 3.54 and 6.93 µW cm-1 K-2 at 300 and 575 K, respectively, outperforming the values in other compositions. This work provides important guidance on improving thermoelectric performance of p-type Mg3Sb2- xBix utilizing the topological electronic transition.

6.
Br J Cancer ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594371

RESUMEN

BACKGROUND: Previous studies of non-small cell lung cancer (NSCLC) focused on CEA measured at a single time point, ignoring serial CEA measurements. METHODS: This retrospective cohort included 2959 patients underwent surgery for stage I-III NSCLC. CEA trajectory patterns and long-term cumulative CEA burden were evaluated using the latent class growth mixture model. RESULTS: Four CEA trajectory groups were identified, named as low-stable, decreasing, early-rising and later-rising. Compared with the low-stable group, the adjusted hazard ratios associated with death were 1.27, 4.50, and 3.68 for the other groups. Cumulative CEA burden were positively associated with the risk of death in patients not belonging to the low-stable group. The 5-year overall survival (OS) rates decreased from 62.3% to 33.0% for the first and fourth quantile groups of cumulative CEA burden. Jointly, patients with decreasing CEA trajectory could be further divided into the decreasing & low and decreasing & high group, with 5-year OS rates to be 77.9% and 47.1%. Patients with rising CEA trajectory and high cumulative CEA were found to be more likely to develop bone metastasis. CONCLUSIONS: Longitudinal trajectory patterns and long-term cumulative burden of CEA were independent prognostic factors of NSCLC. We recommend CEA in postoperative surveillance of NSCLC.

7.
Ann Nucl Med ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602614

RESUMEN

OBJECTIVE: To investigate the survival benefit of preoperative bone scan in asymptomatic patients with early-stage non-small cell lung cancer (NSCLC). METHODS: This retrospective study included patients with radical resection for stage T1N0M0 NSCLC between March 2013 and December 2018. During postoperative follow-up, we monitored patient survival and the development of bone metastasis. We compared overall survival, bone metastasis-free survival, and recurrence-free survival in patients with or without preoperative bone scan. Propensity score matching and inverse probability of treatment weighting were used to minimize election bias. RESULTS: A total of 868 patients (58.19 ± 9.69 years; 415 men) were included in the study. Of 87.7% (761 of 868) underwent preoperative bone scan. In the multivariable analyses, bone scan did not improve overall survival (hazard ratio [HR] 1.49; 95% confidence intervals [CI] 0.91-2.42; p = 0.113), bone metastasis-free survival (HR 1.18; 95% CI 0.73-1.90; p = 0.551), and recurrence-free survival (HR 0.89; 95% CI 0.58-1.39; p = 0.618). Similar results were obtained after propensity score matching (overall survival [HR 1.28; 95% CI 0.74-2.23; p = 0.379], bone metastasis-free survival [HR 1.00; 95% CI 0.58-1.72; p = 0.997], and recurrence-free survival [HR 0.76; 95% CI 0.46-1.24; p = 0.270]) and inverse probability of treatment weighting. CONCLUSION: There were no significant differences in overall survival, bone metastasis-free survival, and recurrence-free survival between asymptomatic patients with clinical stage IA NSCLC with or without preoperative bone scan.

8.
Acta Biomater ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663684

RESUMEN

Ferroptosis induced by lipid peroxide (LPO) accumulation is an effective cell death pathway for cancer therapy. However, how to effectively induce ferroptosis at tumor sites and improve its therapeutic effectiveness remains challenging. Here, MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex with tumor-specific targeting and TME response is constructed to overcome immunosuppressive tumor microenvironment (TME) to potentiate the curative effect of ferroptosis by coupling the immune checkpoint indoleamine 2,3-dioxygenase (IDO) inhibitor, NLG919, and hyaluronic acid (HA) to novel ultra-small MnFe2O4@NaGdF4 (MG) nanoparticles with a Janus structure. Firstly, tumor site-precise delivery of MG and NLG919 is achieved with HA targeting. Secondly, MG acts as a magnetic resonance imaging contrast agent, which not only has a good photothermal effect to realize tumor photothermal therapy, but also depletes glutathione and catalyzes the production of reactive oxygen species from endogenous H2O2, which effectively promotes the accumulation of LPO and inhibits the expression of glutathione peroxidase 4, achieving enhanced ferroptosis. Thirdly, NLG919 inhibits the differentiation of Tregs by blocking the tryptophan/kynurenine immune escape pathway, thereby reversing immunosuppressive TME together with the Mn2+-activated cGAS-STING pathway. This work contributes new perspectives for the development of novel ultra-small Janus nanoparticles to reshape immunosuppressive TME and ferroptosis activation. STATEMENT OF SIGNIFICANCE: The Janus structured MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex was synthesized, which can realize the precise delivery of T1/T2 contrast agents MnFe2O4@NaGdF4 (MG) and NLG919 at the tumor site under the ultra-small Janus structural characteristics and targeted molecule HA. The production of ROS, consumption of GSH, and photothermal properties of MGNH make it possible for CDT/PTT activated ferroptosis, and synergistically disrupt and reprogram tumor growth and immunosuppressive tumor microenvironment with NLG919 and Mn2+-mediated activation of cGAS-STING pathway, achieving CDT/PTT/immunotherapy activated by ferroptosis. Meanwhile, ultra-small structural properties of MGNH facilitate subsequent metabolic clearance by the body, allowing for the minimization of potential biotoxicity associated with its prolonged retention.

9.
Sci Rep ; 14(1): 5959, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472335

RESUMEN

In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Enfermedad de Alzheimer/metabolismo , Proteómica , Complejo 2 de Proteína Adaptadora/metabolismo , Vesículas Extracelulares/metabolismo
10.
Artif Intell Med ; 150: 102829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553167

RESUMEN

Heart failure has become a huge public health problem, and failure to accurately predict readmission will further lead to the disease's high cost and high mortality. The construction of readmission prediction model can assist doctors in making decisions to prevent patients from deteriorating and reduce the cost burden. This paper extracts the patient discharge records from the MIMIC-III database. It divides the patients into three research categories: no readmission, readmission within 30 days, and readmission after 30 days, to predict the readmission of patients. We propose the HR-BGCN model to predict the readmission of patients. First, we use the Adaptive-TMix to improve the prediction indicators of a few categories and reduce the impact of unbalanced categories. Then, the knowledge-informed graph attention mechanism is proposed. By introducing a document-level explicit diagram structure, the coding ability of graph node features is significantly improved. The paragraph-level representation obtained through graph learning is combined with the context token-level representation of BERT, and finally, the multi-classification task is carried out. We also compare several typical graph learning classification models to verify the model's effectiveness, such as the IA-GCN model, GAT model, etc. The results show that the average F1 score of the HR-BGCN model proposed in this paper for 30-day readmission of heart failure patients is 88.26%, and the average accuracy is 90.47%. The HR-BGCN model is significantly better than the graph learning classification model for predicting heart failure readmission. It can help doctors predict the 30-day readmission of patients, then reduce the readmission rate of patients.


Asunto(s)
Registros Electrónicos de Salud , Insuficiencia Cardíaca , Humanos , Readmisión del Paciente , Aprendizaje Automático , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Aprendizaje
11.
ACS Nano ; 18(11): 8143-8156, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38436248

RESUMEN

The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.


Asunto(s)
Artemisininas , Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Nanovacunas , Aluminio , Neoplasias/tratamiento farmacológico , Hierro , Hidróxidos , Inmunoterapia/métodos , Microambiente Tumoral
12.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38551495

RESUMEN

Lipid droplets (LDs) are composed of a core of neutral lipids wrapped by a phospholipid (PL) monolayer containing several hundred proteins that vary between different cells or organisms. How LD proteins target to LDs is still largely unknown. Here, we show that RNAi knockdown or gene mutation of let-767, encoding a member of hydroxysteroid dehydrogenase (HSD), displaced the LD localization of three well-known LD proteins: DHS-3 (dehydrogenase/reductase), PLIN-1 (perilipin), and DGAT-2 (diacylglycerol O-acyltransferase 2), and also prevented LD growth in Caenorhabditis elegans. LET-767 interacts with ARF-1 (ADP-ribosylation factor 1) to prevent ARF-1 LD translocation for appropriate LD protein targeting and lipid homeostasis. Deficiency of LET-767 leads to the release of ARF-1, which further recruits and promotes translocation of ATGL-1 (adipose triglyceride lipase) to LDs for lipolysis. The displacement of LD proteins caused by LET-767 deficiency could be reversed by inhibition of either ARF-1 or ATGL-1. Our work uncovers a unique LET-767 for determining LD protein targeting and maintaining lipid homeostasis.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Caenorhabditis elegans , Gotas Lipídicas , Homeostasis , Lipasa/genética , Proteínas Asociadas a Gotas Lipídicas/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Lípidos , Lipólisis/fisiología , Proteínas/metabolismo , Caenorhabditis elegans , Animales , Oxidorreductasas de Alcohol/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
13.
PLoS Biol ; 22(3): e3002537, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447109

RESUMEN

Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.


Asunto(s)
Lipopolisacáridos , Proteómica , Animales , Ratones , Lipopolisacáridos/farmacología , Autofagia , Inflamación , Macrófagos , Complejo de la Endopetidasa Proteasomal
14.
J Gastrointest Oncol ; 15(1): 179-189, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38482244

RESUMEN

Background: Adjuvant chemotherapy is considered for stage II colorectal cancer (CRC) patients with poor prognostic risk factors. However, current stratification algorithms are still insufficient to identify high-risk patients. Methods: We conducted a screening strategy to define ZNF326 based on quantitative proteomics in 11 paired CRC patients selected by a nested case-control design, and tested the association between ZNF326 expression level with the prognosis of stage II CRC patients and the benefit from adjuvant chemotherapy in public datasets; further investigation was conducted through subgroup analyses. Results: We found that low ZNF326 expression was significantly associated with a lower 5-year overall survival (OS) rate among stage II patients in both the discovery [P=0.008; hazard ratio (HR): 3.13, 95% confidence interval (CI): 1.29-7.58] and validation (P=0.025; HR: 1.98, 95% CI: 1.08-3.65) cohorts. In the Cox multivariable analysis, low ZNF326 expression was both associated with shorter OS after adjustment for age, sex, and adjuvant chemotherapy in the discovery and validation data sets. Subgroup analyses yielded largely similar results. In a pooled database, the rate of 5-year OS was higher among stage II ZNF326-high tumors who were treated with adjuvant chemotherapy than it was among those who were not treated with adjuvant chemotherapy (P=0.011; HR: 0.28, 95% CI: 0.10-0.80). Conclusions: ZNF326 has the potential to be used in clinical practice for risk classification. ZNF326-low expression level identified a subgroup of patients with high-risk stage II CRC who appeared to less benefit from adjuvant chemotherapy.

15.
J Diabetes Res ; 2024: 8520489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375094

RESUMEN

Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , MicroARNs , Humanos , Retinopatía Diabética/patología , MicroARNs/genética , MicroARNs/uso terapéutico , Inflamación/patología , Glucocorticoides/uso terapéutico , Fotocoagulación , Diabetes Mellitus/tratamiento farmacológico
16.
FASEB J ; 38(2): e23443, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38265281

RESUMEN

Immune-mediated acute hepatic injury is characterized by the destruction of a large number of hepatocytes and severe liver function damage. Interleukin-28A (IL-28A), a member of the IL-10 family, is notable for its antiviral properties. However, despite advances in our understanding of IL-28A, its role in immune-mediated acute injury remains unclear. The present study investigated the role of IL-28A in concanavalin A (Con A)-induced acute immune liver injury. After Con A injection in mice, IL-28A level significantly increased. IL-28A deficiency was found to protect mice from acute liver injury, prolong survival time, and reduce serum aspartate aminotransferase and alanine aminotransferase levels. In contrast, recombinant IL-28A aggravated liver injury in mice. The proportion of activated M1 macrophages was significantly lower in the IL-28A-deficiency group than in the wild-type mouse group. In adoptive transfer experiments, M1 macrophages from WT could exacerbate mice acute liver injury symptoms in the IL-28A deficiency group. Furthermore, the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-12, IL-6, and IL-1ß, by M1 macrophages decreased significantly in the IL-28A-deficiency group. Western blotting demonstrated that IL-28A deficiency could limit M1 macrophage polarization by modulating the nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and interferon regulatory factor (IRF) signaling pathways. In summary, IL-28A deletion plays an important protective role in the Con A-induced acute liver injury model and IL-28A deficiency inhibits the activation of M1 macrophages by inhibiting the NF-κB, MAPK, and IRF signaling pathways. These results provide a potential new target for the treatment of immune-related hepatic injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citocinas , Interferón lambda , Interleucinas , Animales , Ratones , Concanavalina A , Factores Reguladores del Interferón , Hígado , Macrófagos , Proteínas Quinasas Activadas por Mitógenos , Interferón lambda/genética , Interleucinas/genética
17.
Adv Healthc Mater ; 13(4): e2302095, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37975590

RESUMEN

Pyroptosis, as an inflammatory cell death, has been widely applied in tumor therapy, but its systemic adverse reactions caused by nonspecific activation still seriously hinder its application. Herein, a near-infrared (NIR) light-triggered thermoresponsive pyroptosis strategy is designed for on-demand initiation of pyroptosis and synergistic tumor immunotherapy. Specifically, glucose oxidase (GOx) loaded and heat-sensitive material p(OEOMA-co-MEMA) (PCM) modified mesoporous Pt nanoparticles (abbreviated as PCM Pt/GOx) are prepared as the mild-temperature triggered pyroptosis inducer. Pt nanoparticles can not only serve as nanozyme with catalase-like activity to promote GOx catalytic reaction, but also act as photothermal agent to achieve mild-temperature photothermal therapy (PTT) and thermoresponsive GOx release on-demand under the irradiation of NIR light, thereby activating and promoting pyroptosis. In vitro and in vivo experiments prove that NIR light-triggered thermoresponsive pyroptosis system exhibits excellent antitumor immunity activity as well as significantly inhibits tumor growth. The precise control of pyroptosis by NIR light as well as pyroptosis cooperated with mild-temperature PTT for synergistically attenuated tumor immunotherapy are reported for the first time. This work provides a new method to initiate pyroptosis on demand, which is of great significance for spatiotemporally controllable pyroptosis and immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Piroptosis , Rayos Infrarrojos , Neoplasias/terapia , Inmunoterapia , Línea Celular Tumoral , Fototerapia , Microambiente Tumoral
18.
Small ; 20(1): e2304438, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661593

RESUMEN

The cell elimination strategy based on reactive oxygen species (ROS) is a promising method for tumor therapy. However, its efficacy is significantly limited by ROS deficiency caused by H2 O2 substrate deficiency and up-regulation of cellular antioxidant defense induced by high glutathione (GSH) content in tumor cells. To overcome these obstacles, a multifunctional self-cascaded nanocomposite: glucose oxidase (GOX) loaded NaYF4 :Yb/Er@Mn3 O4 (UC@Mn3 O4 , labeled as UCMn) is constructed. Only in tumor microenvironment, it can be specifically activated through a series of cascades to boost ROS production via a strategy of open source (H2 O2 self-supplying ability). The increased ROS can enhance lipid peroxidation and induce tumor cell apoptosis by activating the protein caspase. More importantly, the nanozyme can consume GSH to inhibit glutathione peroxidase 4 (GPX4) activity, which limits tumor cell resistance to oxidative damage and triggers the tumor cell ferroptosis. Therefore, this strategy is expected to overcome the resistance of tumor to oxidative damage and achieve efficient oxidative damage of tumor. Further, degradation of the Mn3 O4 layer induced by GSH and acidic environment can promote the fluorescence recovery of UC fluorescent nuclear for tumor imaging to complete efficient integration of diagnosis and treatment for tumor.


Asunto(s)
Ferroptosis , Nanocompuestos , Neoplasias , Humanos , Glucosa Oxidasa , Especies Reactivas de Oxígeno , Apoptosis , Imagen Óptica , Antioxidantes , Glutatión , Neoplasias/terapia , Línea Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrógeno
19.
Phytochem Anal ; 35(2): 271-287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37779218

RESUMEN

INTRODUCTION: Coptidis Rhizoma (CR) is one of the most frequently used herbs to treat ulcerative colitis (UC) and is often processed before usage. However, the composition changes and therapeutic effects of CR before and after processing in the treatment of UC are still unclear. OBJECTIVE: The purpose of the study is to explore the chemical components and therapeutic effects of crude and processed CR. MATERIAL AND METHODS: CR was processed according to the 2020 version of the Chinese Pharmacopoeia. The liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical analysis were used to screen the different compounds before and after processing. The network pharmacological prediction was carried out. The mechanism and therapeutic effects between crude and processed CR were verified by using dextran sulphate sodium-induced UC mice assay. RESULTS: Ten compounds distinguish crude and processed CR based on multivariate statistical analysis. Network pharmacology predicts that the 10 compounds mainly play a role through TNF-α and IL-6 targets and PI3K/Akt and HIF-1 signalling pathways, and these results are verified by molecular biology experiments. For IL-6, IL-10 and TNF-α inflammatory factors, CR is not effective, while CR stir-fried with Evodiae Fructus (CRFE) and ginger juice (CRGJ) are. For PI3K/p-Akt, Cleaved caspase3, NF- κBp65 and HIF-1α signalling pathways, CR has therapeutic effects, while CRFE and CRGJ are significant. CONCLUSION: Overall, CRFE and CRGJ show better effects in treating UC. The chemical changes of processing and the efficacy of processed CR are correlated, which provides a scientific basis for the clinical use of crude and processed CR.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Ratones , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Farmacología en Red , Factor de Necrosis Tumoral alfa , Interleucina-6 , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/uso terapéutico
20.
Small Methods ; 8(3): e2300945, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37906051

RESUMEN

Traditionally referred to as "metabolic junk", lactate has now been recognized as essential "energy currency" and crucial "messenger" that contributes to tumor evolution, immunosuppression, etc., thus presenting a promising strategy for antitumor interventions. Similarly, kynurenine (Kyn) also exerts an immunosuppressive function, thereby significantly compromising the effectiveness of immunotherapy. This study proposes and validates a strategy for enhancing immunotherapy through photothermal-assisted depletion of lactate sustained by cycle-like O2 supply, with blocking the tryptophan (Trp)/Kyn metabolic pathway. In brief, a nanozyme therapeutic agent (PNDPL) is constructed, which mainly consists of PtBi nanozymes, lactate oxidase (LOX) and the indoleamine 2,3-dioxygenase (IDO) inhibitor NLG919. The PtBi nanozymes, which exhibit a catalase (CAT)-like activity, form a positive feedback loop with LOX to consume lactate while self-supplying O2 . Moreover, PtBi nanozymes retain enzyme-like performance even in a slightly acidic tumor microenvironment. Under 1064 nm irradiation, photothermal therapy (PTT) not only induces tumor cell death but also accelerates lactate exhaustion. Therefore, the combination of lactate depletion-induced starvation therapy and PTT, along with the blocking of IDO-mediated immune escape, effectively inhibits tumor growth and reverses immunosuppressive microenvironment, thus preventing tumor metastasis. This study represents the first investigation into the synergistic antitumor effects by lactate metabolism regulation and IDO-related immunotherapy.


Asunto(s)
Quinurenina , Neoplasias , Humanos , Quinurenina/metabolismo , Ácido Láctico/farmacología , Triptófano/farmacología , Inmunoterapia , Neoplasias/terapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...