Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Opt Lett ; 49(11): 3279-3282, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824383

RESUMEN

AlGaN-based solar-blind ultraviolet avalanche detectors have huge potentials in the fields of corona discharge monitoring, biological imaging, etc. Here, we study the impact of the heterojunction polarization-related effects on the AlGaN-based solar-blind ultraviolet avalanche detectors. Our work confirms that the polarization heterojunction is beneficial to reducing avalanche bias and lifting avalanche gain by improving the electric field in the depletion region, while the polarization-induced fixed charges will lead to a redistribution of the electrons, in turn shielding the charges and weakening the electric field enhancement effect. This shielding effect will need external bias to eliminate, and that is why the polarization heterojunction cannot work at relatively low bias but has an enhancement effect at high bias. Controlling the doping level between the hetero-interface can affect the shielding effect. An unintentionally doped polarization heterojunction can effectively reduce the shielding effect, thus reducing the avalanche bias. The conclusions also hold true for the negative polarization regime. We believe our findings can provide some useful insights for the design of the AlGaN-based solar-blind ultraviolet detectors.

2.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894078

RESUMEN

The paper presents a wide-bandwidth, low-polarization semiconductor optical amplifier (SOA) based on strained quantum wells. By enhancing the material gain of quantum wells for TM modes, we have extended the gain bandwidth of the SOA while reducing its polarization sensitivity. Through a combination of tilted waveguide design and cavity surface optical thin film design, we have effectively reduced the cavity surface reflectance of the SOA, thus decreasing device transmission losses and noise figure. At a wavelength of 1550 nm and a drive current of 1.4 A, the output power can reach 188 mW, with a small signal gain of 36.4 dB and a 3 dB gain bandwidth of 128 nm. The linewidth broadening is only 1.032 times. The polarization-dependent gain of the SOA is below 1.4 dB, and the noise figure is below 5.5 dB. The device employs only I-line lithography technology, offering simple fabrication processes and low costs yet delivering outstanding and stable performance. The designed SOA achieves wide gain bandwidth, high gain, low polarization sensitivity, low linewidth broadening, and low noise, promising significant applications in the wide-bandwidth optical communication field across the S + C + L bands.

3.
Drug Discov Today ; : 104026, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762086

RESUMEN

SARS-CoV-2 has triggered an international outbreak of the highly contagious acute respiratory disease known as COVID-19. Identifying key targets in the virus infection lifecycle is crucial for developing effective prevention and therapeutic strategies against it. Furin is a serine endoprotease that belongs to the family of proprotein convertases and plays a critical role in the entry of host cells by SARS-CoV-2. Furin can cleave a specific S1/S2 site, PRRAR, on the spike protein of SARS-CoV-2, which promotes viral transmission by facilitating membrane fusion. Hence, targeting furin could hold clinical implications for the prevention and treatment of COVID-19. This review offers an overview of furin's structure, substrates, function, and inhibitors, with a focus on its potential role in SARS-CoV-2 infection.

4.
Int J Biol Macromol ; 270(Pt 1): 132239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735606

RESUMEN

Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-ß) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-ß pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Subunidades beta de Inhibinas , Mapas de Interacción de Proteínas , Transducción de Señal , Factor de Crecimiento Transformador beta , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Biología Computacional/métodos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Mapas de Interacción de Proteínas/genética , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Mutación , Biomarcadores de Tumor/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-38600687

RESUMEN

Broadband photodetectors have drawn intensive attention owing to their wide application prospects in optical communication, imaging, astronomy, and so on. Two-dimensional transition-metal dichalcogenides (TMDs) are considered as highly potential candidates for photodetection applications, benefiting from their excellent photoelectric properties. However, most of the photodetectors based on TMDs suffer from low performance in the near-infrared (NIR) region due to the weak optical absorption efficiency near their absorption band edge, which severely constrains their usage for broadband optoelectronics. Here, by taking advantage of the high absorption coefficient and environment-friendly property of Ag2S quantum dots (QDs), the hybrid of multilayer MoSe2/Ag2S QDs is demonstrated with a high-performance broadband photodetection capability (532-1270 nm). The favorable energy band alignment of MoSe2/Ag2S QDs facilitates effective separation and collection of photogenerated carriers, and the heterostructure device exhibits significant enhancement of performance compared to the bare MoSe2 device. High responsivity, detectivity, and external quantum efficiency of 25.5 A/W, 1.45 × 1011 Jones, and 1070% are obtained at a low working voltage of 1 V under 980 nm illumination. The responsivity of the device can reach up to 1.2 A/W at 1270 nm wavelength, which is competitive to the commercial NIR photodetectors. Meanwhile, broadband imaging capability is demonstrated. Our work may open up a facile and eco-friendly approach to construct high-performance broadband photodetectors for next-generation compact optoelectronic applications.

6.
ACS Appl Mater Interfaces ; 16(13): 16427-16435, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38523333

RESUMEN

Integrating ferroelectric AlScN with III-N semiconductors to enhance the performance and tunability of nitride devices requires high-quality AlScN films. This work focuses on the effect and regulation mechanism of post-annealing in pure N2 on the crystal quality and ferroelectric properties of AlScN films. It is found that the crystal quality improves with increasing annealing temperatures. Remarkably, the leakage current of AlScN films caused by grain boundaries could be reduced by four orders of magnitude after annealing at 400 °C. The crystal growth dynamics simulations and band structure calculations indicate that the energy supplied by the temperature facilitates the evolution of abnormally oriented grains to have a better c-axis orientation, resulting in the defect states at the Fermi-level disappearing, which is mainly the reason for the leakage current decrease. More interestingly, the reduction of leakage current leads to the previously leaking region exhibiting ferroelectric properties, which is of great significance to improve the ferroelectricity of AlScN and ensure the uniformity of devices. Furthermore, annealing enhances the tensile strain on the film, which flattens the energy landscape of ferroelectric switching and reduces the coercive field. However, the risk of incorporation of oxygen will also be increased if the annealing temperatures are higher than 400 °C, which will not only reduce the relative displacement of metal atoms and nitrogen atoms in AlScN but also enhance the ferroelectric depolarization field, leading to the remnant polarization decreasing dramatically. These discoveries facilitate a deeper understanding of the influencing mechanism on the ferroelectric properties of AlScN films and provide a direction for obtaining high-quality AlScN.

7.
Light Sci Appl ; 13(1): 78, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553460

RESUMEN

With the fast development of artificial intelligence (AI), Internet of things (IOT), etc, there is an urgent need for the technology that can efficiently recognize, store and process a staggering amount of information. The AlScN material has unique advantages including immense remnant polarization, superior temperature stability and good lattice-match to other III-nitrides, making it easy to integrate with the existing advanced III-nitrides material and device technologies. However, due to the large band-gap, strong coercive field, and low photo-generated carrier generation and separation efficiency, it is difficult for AlScN itself to accumulate enough photo-generated carriers at the surface/interface to induce polarization inversion, limiting its application in in-memory sensing and computing. In this work, an electro-optic duplex memristor on a GaN/AlScN hetero-structure based Schottky diode has been realized. This two-terminal memristor shows good electrical and opto-electrical nonvolatility and reconfigurability. For both electrical and opto-electrical modes, the current on/off ratio can reach the magnitude of 104, and the resistance states can be effectively reset, written and long-termly stored. Based on this device, the "IMP" truth table and the logic "False" can be successfully reproduced, indicating the huge potential of the device in the field of in-memory sensing and computing.

8.
Heliyon ; 10(5): e27571, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495179

RESUMEN

The role of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) demethylase, in non-small cell lung cancer (NSCLC) has recently received widespread attention. However the underlying mechanisms of FTO-mediated autophagy regulation in NSCLC progression remain elusive. In this study, we found that FTO was significantly upregulated in NSCLC, and downregulation of FTO suppressed the growth, invasion and migration of NSCLC cells by inducing autophagy. FTO knockdown resulted in elevated m6A levels in NSCLC cells. Methylated RNA immunoprecipitation sequencing showed that sestrin 2 (SESN2) was involved in m6A regulation during autophagy in NSCLC cells. Interestingly, m6A modifications in exon 9 of SESN2 regulated its stability. FTO deficiency promoted the binding of insulin-like growth factor 2 mRNA-binding protein 1 to SESN2 mRNA, enhancing its stability and elevating its protein expression. FTO inhibited autophagic flux by downregulating SESN2, thereby promoting the growth, invasion and migration of NSCLC cells. Besides, the mechanism by which FTO blocked SESN2-mediated autophagy activation was associated with the AMPK-mTOR signaling pathway. Taken together, these findings uncover an essential role of the FTO-autophagy-SESN2 axis in NSCLC progression.

9.
Small ; : e2401150, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506563

RESUMEN

The unique optical and electrical properties of graphene-based heterojunctions make them significant for artificial synaptic devices, promoting the advancement of biomimetic vision systems. However, mass production and integration of device arrays are necessary for visual imaging, which is still challenging due to the difficulty in direct growth of wafer-scale graphene patterns. Here, a novel strategy is proposed using photosensitive polymer as a solid carbon source for in situ growth of patterned graphene on diverse substrates. The growth mechanism during high-temperature annealing is elucidated, leading to wafer-scale graphene patterns with exceptional uniformity, ideal crystalline quality, and precise control over layer number by eliminating the release of volatile from oxygen-containing resin. The growth strategy enables the fabrication of two-inch optoelectronic artificial synaptic device array based on graphene/n-AlGaN heterojunction, which emulates key functionalities of biological synapses, including short-term plasticity, long-term plasticity, and spike-rate-dependent plasticity. Moreover, the mimicry of visual learning in the human brain is attributed to the regulation of excitatory and inhibitory post-synapse currents, following a learning rule that prioritizes initial recognition before memory formation. The duration of long-term memory reaches 10 min. The in situ growth strategy for patterned graphene represents the novelty for fabricating fundamental hardware of an artificial neuromorphic system.

10.
Angew Chem Int Ed Engl ; 63(19): e202317856, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38389190

RESUMEN

In solid-state lithium metal batteries (SSLMBs), the inhomogeneous electrolyte-electrode interphase layer aggravates the interfacial stability, leading to discontinuous interfacial ion/charge transport and continuous degradation of the electrolyte. Herein, we constructed an anion-modulated ionic conductor (AMIC) that enables in situ construction of electrolyte/electrode interphases for high-voltage SSLMBs by exploiting conformational transitions under multiple interactions between polymer and lithium salt anions. Anions modulate the decomposition behavior of supramolecular poly (vinylene carbonate) (PVC) at the electrode interface by changing the spatial conformation of the polymer chains, which further enhances ion transport and stabilizes the interfacial morphology. In addition, the AMIC weakens the "Li+-solvation" and increases Li+ vehicle sites, thereby enhancing the lithium-ion transport number (tLi +=~0.67). Consequently, Li || LiNi0.8Co0.1Mn0.1O2 cell maintains about 85 % capacity retention and Coulombic efficiency >99.8 % in 200 cycles at a charge cut-off voltage of 4.5 V. This study provides a new understanding of lithium salt anions regulating polymer chain segment behavior in the solid-state polymer electrolyte (SPE) and highlights the importance of the ion environment in the construction of interfacial phases and ionic conduction.

11.
Nat Commun ; 15(1): 141, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167874

RESUMEN

Photogating effect is the dominant mechanism of most high-responsivity two-dimensional (2D) material photodetectors. However, the ultrahigh responsivities in those devices are intrinsically at the cost of very slow response speed. In this work, we report a WSe2/Ta2NiSe5 heterostructure detector whose photodetection gain and response speed can be enhanced simultaneously, overcoming the trade-off between responsivity and speed. We reveal that photogating-assisted tunneling synergistically allows photocarrier multiplication and carrier acceleration through tunneling under an electrical field. The photogating effect in our device features low-power consumption (in the order of nW) and shows a dependence on the polarization states of incident light, which can be further tuned by source-drain voltages, allowing for wavelength discrimination with just a two-electrode planar structure. Our findings offer more opportunities for the long-sought next-generation photodetectors with high responsivity, fast speed, polarization detection, and multi-color sensing, simultaneously.

12.
Exp Ther Med ; 27(2): 52, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38234609

RESUMEN

Neuropilin 1 (NRP1/CD304) is a typical membrane-bound co-receptor for vascular endothelial growth factor, semaphorin family members and viral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, NRP1 expression levels across cancer types and the potential role of SARS-CoV-2 infection in patients with cancer are not clear. Online databases, such as The Cancer Genome Atlas database of Human Protein Atlas, Gene Expression Profiling Interactive Analysis and cBioPortal were used for the expression analysis in this study. Immunohistochemical (IHC) staining for NRP1 was performed in the tissues of patients with non-small cell carcinoma. As a result, it was found that NRP1 mRNA and protein expression levels were highest in the female reproductive tissues and the respiratory system, specifically in the nasopharynx, bronchus and fallopian tube, as well as in adipocytes, hepatic stellate cells, Sertoli cells, endothelial cells and dendritic cells. IHC showed that the NRP1 protein was mainly localized to the cytoplasm and membrane in the tissues of patients with non-small cell carcinoma, demonstrating its role in lung infection by SARS-CoV-2, due to invasion of cell membranes by the virus. Levels of NRP1 mRNA were significantly increased in lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney renal clear cell carcinoma (KIRC), pancreatic adenocarcinoma, stomach adenocarcinoma and thymoma, and significantly decreased in cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney chromophobe, lung squamous cell carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uterine carcinosarcoma, compared with corresponding healthy tissues in pancancer, indicating roles for viral invasion in most cancer types. Moreover, low NRP1 expression was significantly associated with long overall survival (OS) time in adrenocortical carcinoma, brain lower grade glioma, stomach adenocarcinoma and uveal melanoma, but with short OS time in KIRC only. The ENST00000374867.6 (NRP1-202) isoform is most highly expressed in most cancer types and thus could be involved in tumorigenesis and SARS-CoV-2 invasion in cancer patients. NRP1 may be involved in SARS-CoV-2 invasion in patients with cancer, including those with lung cancer.

13.
Nanoscale Adv ; 6(2): 418-427, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235089

RESUMEN

AlN films are widely used owing to their superior characteristics, including an ultra-wide bandgap, high breakdown field, and radiation resistance. High-temperature annealing (HTA) makes it easy to obtain high-quality AlN films, with the advantages of a simple process, good repeatability, and low cost. However, it is always found that there is a lattice-polarity inversion from a N-polarity near the sapphire to an Al-polarity in the HTA c-oriented AlN/sapphire. Currently, the formation mechanism is still unclear, which hinders its further wide applications. Therefore, the formation mechanism of the polarity inversion and its impacts on the quality and stress profile of the upper AlN in the HTA c-oriented AlN/sapphire were investigated. The results imply that the inversion originated from the diffusion of the Al and O atoms from the sapphire. Due to the presence of abundant Al vacancies (VAl) in the upper AlN, Al atoms in the sapphire diffuse into the upper AlN during the annealing to fill the VAl, resulting in the O-terminated sapphire, leading to the N-polar AlN. Meanwhile, O atoms in the sapphire also diffuse into the upper AlN during the annealing, forming an AlxOyNz layer and causing the inversion from N- to Al-polarity. The inversion has insignificant impacts on the quality and stress distribution of the upper AlN. Besides, this study predicts the presence of a two-dimensional electron gas at the inversion interface. However, the measured electron concentration is much lower than that predicted, which may be due to the defect compensation, low polarization level, and strong impurity scattering.

14.
Neuropsychopharmacology ; 49(3): 497-507, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37491673

RESUMEN

Autism spectrum disorder (ASD) is a complicated, neurodevelopmental disorder characterized by social deficits and stereotyped behaviors. Accumulating evidence suggests that ferroptosis is involved in the development of ASD, but the underlying mechanism remains elusive. Puerarin has an anti-ferroptosis function. Here, we found that the administration of puerarin from P12 to P15 ameliorated the autism-associated behaviors in the VPA-exposed male mouse model of autism by inhibiting ferroptosis in neural stem cells of the hippocampus. We highlight the role of ferroptosis in the hippocampus neurogenesis and confirm that puerarin treatment inhibited iron overload, lipid peroxidation accumulation, and mitochondrial dysfunction, as well as enhanced the expression of ferroptosis inhibitory proteins, including Nrf2, GPX4, Slc7a11, and FTH1 in the hippocampus of VPA mouse model of autism. In addition, we confirmed that inhibition of xCT/Slc7a11-mediated ferroptosis occurring in the hippocampus is closely related to puerarin-exerted therapeutic effects. In conclusion, our study suggests that puerarin targets core symptoms and hippocampal neurogenesis reduction through ferroptosis inhibition, which might be a potential drug for autism intervention.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ferroptosis , Isoflavonas , Masculino , Animales , Ratones , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Ácido Valproico , Modelos Animales de Enfermedad
15.
Microorganisms ; 11(12)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38138098

RESUMEN

NRP1/CD304 is a typical membrane-bound co-receptor for the vascular endothelial cell growth factor (VEGF), semaphorin family members, and viral SARS-CoV-2. Cordycepin (CD) is a natural product or active gradient from traditional Chinese medicine (TCM) from Cordyceps militaris Link and Ophiocordyceps sinensis (Berk.). However, NRP1 expression regulation via CD in cancers and the potential roles and mechanisms of SARS-CoV-2 infection are not clear. In this study, online databases were analyzed, Western blotting and quantitative RT-PCR were used for NRP1 expression change via CD, molecular docking was used for NRP/CD interaction, and a syncytial formation assay was used for CD inhibition using a pseudovirus SARS-CoV-2 entry. As a result, we revealed that CD inhibits NRP1 expressed in cancer cells and prevents viral syncytial formation in 293T-hACE2 cells, implying the therapeutic potential for both anti-cancer and anti-viruses, including anti-SARS-CoV-2. We further found significant associations between NRP1 expressions and the tumor-immune response in immune lymphocytes, chemokines, receptors, immunostimulators, immune inhibitors, and major histocompatibility complexes in most cancer types, implying NRP1's roles in both anti-cancer and anti-SARS-CoV-2 entry likely via immunotherapy. Importantly, CD also downregulated the expression of NRP1 from lymphocytes in mice and downregulated the expression of A2AR from the lung cancer cell line H1975 when treated with CD, implying the NRP1 mechanism probably through immuno-response pathways. Thus, CD may be a therapeutic component for anti-cancer and anti-viral diseases, including COVID-19, by targeting NRP1 at least.

16.
Nat Commun ; 14(1): 6739, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875483

RESUMEN

Birefringence is at the heart of photonic applications. Layered van der Waals materials inherently support considerable out-of-plane birefringence. However, funnelling light into their small nanoscale area parallel to its out-of-plane optical axis remains challenging. Thus far, the lack of large in-plane birefringence has been a major roadblock hindering their applications. Here, we introduce the presence of broadband, low-loss, giant birefringence in a biaxial van der Waals materials Ta2NiS5, spanning an ultrawide-band from visible to mid-infrared wavelengths of 0.3-16 µm. The in-plane birefringence Δn ≈ 2 and 0.5 in the visible and mid-infrared ranges is one of the highest among van der Waals materials known to date. Meanwhile, the real-space propagating waveguide modes in Ta2NiS5 show strong in-plane anisotropy with a long propagation length (>20 µm) in the mid-infrared range. Our work may promote next-generation broadband and ultracompact integrated photonics based on van der Waals materials.

17.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687780

RESUMEN

The 1550 nm band semiconductor optical amplifier (SOA) has great potential for applications such as optical communication. Its wide-gain bandwidth is helpful in expanding the bandwidth resources of optical communication, thereby increasing total capacity transmitted over the fiber. Its relatively low cost and ease of integration also make it a high-performance amplifier of choice for LiDAR applications. In recent years, with the rapid development of quantum-well (QW) material systems, SOAs have gradually overcome the shortcomings of polarization sensitivity and high noise. The research on quantum-dot (QD) materials has further improved the noise characteristics and transmission loss of SOAs. The design of special waveguide structures-such as plate-coupled optical waveguide amplifiers and tapered amplifiers-has also increased the saturation output power of SOAs. The maximum gain of the SOA has been reported to be more than 21 dB. The maximum saturation output power has been reported to be more than 34.7 dBm. The maximum 3 dB gain bandwidth has been reported to be more than 120 nm, the lowest noise figure has been reported to be less than 4 dB, and the lowest polarization-dependent gain has been reported to be 0.1 dB. This study focuses on the improvement and enhancement of the main performance parameters of high-power SOAs in the 1550 nm band and introduces the performance parameters, the research progress of high-power SOAs in the 1550 nm band, and the development and application status of SOAs. Finally, the development trends and prospects of high-power SOAs in the 1550 nm band are summarized.

18.
Opt Lett ; 48(19): 5069-5072, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773387

RESUMEN

III-nitride optoelectronic chips have tremendous potential for developing integrated computing and communication systems with low power consumption. The monolithic, top-down approaches are advantageous for simplifying the fabrication process and reducing the corresponding manufacturing cost. Herein, an ultraviolet optical interconnection system is investigated to discover the way of multiplexing between emission and absorption modulations on a monolithic optoelectronic chip. All on-chip components, the transmitter, monitor, waveguide, modulator, and receiver, share the same quantum well structure. As an example, two bias-controlled modulation modes are used to modulate video and audio signals in the experiment presented in this Letter. The results show that our on-chip optoelectronic system works efficiently in the near ultraviolet band, revealing the potential breadth of GaN optoelectronic integration.

19.
Nanoscale ; 15(32): 13252-13261, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37548442

RESUMEN

With the advantages of a moderate band gap, high carrier mobility and good environmental stability, two-dimensional (2D) semiconductors show promising applications in next-generation electronics. However, the accustomed metal-2D semiconductor contact may lead to a strong Fermi level pinning (FLP) effect, which severely limits the practical performance of 2D electronics. Herein, the interfacial properties of the contacts between a promising 2D semiconductor, PtSe2, and a sequence of metal electrodes are systematically investigated. The strong interfacial interactions formed in all metal-PtSe2 contacts lead to chemical bonds and a significant interfacial dipole, resulting in a vertical Schottky barrier for Ag, Au, Pd and Pt-based systems and a lateral Schottky barrier for Al, Cu, Sc and Ti-based systems, with a strong FLP effect. Remarkably, the tunneling probability for most metal-PtSe2 is significantly high and the tunneling-specific resistivity is two orders of magnitude lower than that of the state-of-the-art contacts, demonstrating the high efficiency for electron injection from metals to PtSe2. Moreover, the introduction of h-BN as a buffer layer leads to a weakened FLP effect (S = 0.50) and the transformation into p-type Schottky contact for Pt-PtSe2 contacts. These results reveal the underlying mechanism of the interfacial properties of metal-PtSe2 contacts, which is useful for designing advanced 2D semiconductor-based electronics.

20.
J Phys Chem Lett ; 14(29): 6719-6725, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37470335

RESUMEN

Insightful understanding of defect properties and prevention of defect damage are among the biggest issues in the development of photoelectronic devices based on wide-gap III-nitride semiconductors. Here, we have investigated the vacancy-induced carrier nonradiative dynamics in wide-gap III-nitrides (GaN, AlN, and AlxGa1-xN) by ab initio molecular dynamics and nonadiabatic (NA) quantum dynamics simulations since the considerable defect density in epitaxy samples. E-h recombination is hardly affected by Vcation, which created shallow states near the VBM. Our findings demonstrate that VN in AlN creates defect-assisted nonradiative recombination centers and shortens the recombination time (τ) as in the Shockley-Read-Hall (SRH) model. In GaN, VN improves the NA coupling between the CBM and the VBM. Additionally, increasing x in the AlxGa1-xN alloys accelerates nonradiative recombination, which may be an important issue in further improving the IQE of high Al-content AlxGa1-xN alloys. These findings have significant implications for the improvement of wide-gap III-nitrides-based photoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...