Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Nano Lett ; 24(17): 5255-5259, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647273

RESUMEN

After the first report of a graphene-based passive mode-locking ultrafast fiber laser, two-dimensional materials as efficient saturable absorbers offer a new horizon in ultrafast fiber laser. However, the interactions on atomic scale between these two-dimensional materials and fiber and the fiber effect on the carrier dynamics have not been realized. To figure out the exact role of fiber and the carrier dynamics affected by the fiber substrate related to ultrafast photonics, bismuthene, a newly reported 2D quantum material used in a passive mode-locking fiber laser, deposited on α-quartz has been investigated. We surprisingly found that the α-quartz substrate can strongly accelerate the nonradiative electron-hole recombination of bismuthene in theory, and the transient absorption spectra of bismuthene on normal glass and α-quartz further verify the substrate effect on carrier dynamics of bismuthene. The discovery provides new thinking about substrate effect to regulate the performance of ultrafast mode-locking fiber lasers as well as ultrafast photonics.

2.
Opt Express ; 32(3): 3461-3469, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297566

RESUMEN

The laser diode (LD)-pumped Tm:YAP (a-cut, 3.5 at.%) laser generated a maximum ∼2.3 µm continuous wave (CW) laser output power of ∼3 W. The higher output power benefited from the positive effect of the cascade lasing (simultaneously operating on the 3H4 → 3H5 and 3F4 → 3H6 Tm3+ transition). It was the highest CW laser output power amongst the LD/Ti:Sapphire-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far. Under the cascade laser operation, the slope efficiency of the ∼2.3 µm laser emission versus the absorbed pump power increased from 13.0% to 21.4%.

3.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223121

RESUMEN

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

4.
Appl Biochem Biotechnol ; 196(2): 1044-1057, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37318687

RESUMEN

The study aimed to determine the expression of miR451 in colorectal cancer (CRC) subjects with CRC cells, and the role of miR451 in colorectal cancer cells. In October 2020, ATC purchased CRC and normal mucosal cell lines of CRC and implanted them in DMEM with 10% fetal serum. The suitability of the HT29 cell line is verified using the STR profile. In an incubator with 5% CO2, enlarged cells were placed at 37 °C. TCGA data was used to select the top 120 patients with a high voice and the lowest 120 patients with a low voice. Cells were collected and coated with Annexin V and PE according to the manufacturer's instructions after 24.0 h. After that, the cells were separated. Cells were also tested using flow cytometry. HCT-120 cells were transplanted into a concentration of 5×105/ml cells in 6-source plates. HCT120 cells in the experimental group were combined with miR451 mimics, miR451 inhibitors, or miR451 miR + SMAD4B for 12 h at 37 °C, and cells were collected 24 h later at 37 °C. The sample was injected with 5 ml of Annexin VFITC and PE. Compared with normal colorectal mucosal cells, CRC cell lines decreased miR451 expression levels (fetal human cells (FHC) and HCoEpiC). Then, the HCT120 cells were transfected with miR451 inhibitors, and 72 h after transfection, say of miR451 was normal. There was a significant decrease in cell function in the miR451mimic groups, but an increase when the miR451 was blocked. The proliferation of cancer cells was prevented and chemotherapy was effective when miR451 was overexpressed. The SMAD4 gene provides instructions for making a protein involved in transmitting chemical signals from the cell surface to the nucleus. The SMAD4B expression was tested by RT-qPCR and Western blotting after 72.0 h of transmission. The mRNA and protein expression of SMAD4B decreased significantly when miR451 was significantly higher than when inhibited, as revealed in the results of this study. Seventy-two hours after transplantation, mRNA levels and SMAD4B proteins were measured in HCT120 cells. In addition, the researchers in this study investigated whether miR451 was associated with SMAD4B-directed control of CRC growth and migration. It was found that SMAD4B is highly expressed in both CRC and para-cancer tissues while using the TCGA database to detect SMAD4B expression. Patients with CRC with SMAD4B have a severe prognosis. MiR451 is sensitive to depressive disorders by targeting SMAD4B, according to these studies. We found that miR451 inhibited cell growth and migration, made CRC cells more readily available in chemotherapy, and did so by targeting SMAD4B. The findings suggest that miR451 and its genetic predisposition, SMAD4B, may help predict the prognosis and course of cancer patients. Treatments that target the miR451/SMAD4B axis may be helpful to people with CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Movimiento Celular/genética , Células HT29 , Proliferación Celular/genética , ARN Mensajero , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
5.
Insights Imaging ; 14(1): 214, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072865

RESUMEN

OBJECTIVES: We aimed to develop a combined model based on clinical and radiomic features to classify fracture age. METHODS: We included 1219 rib fractures from 239 patients from our center between March 2016 and September 2022. We created an external dataset using 120 rib fractures from 32 patients from another center between October 2019 and August 2023. According to tasks (fracture age between < 3 and ≥ 3 weeks, 3-12, and > 12 weeks), the internal dataset was randomly divided into training and internal test sets. A radiomic model was built using radiomic features. A combined model was constructed using clinical features and radiomic signatures by multivariate logistic regression, visualized as a nomogram. Internal and external test sets were used to validate model performance. RESULTS: For classifying fracture age between < 3 and ≥ 3 weeks, the combined model had higher areas under the curve (AUCs) than the radiomic model in the training set (0.915 vs 0.900, p = 0.009), internal test (0.897 vs 0.854, p < 0.001), and external test sets (0.881 vs 0.811, p = 0.003). For classifying fracture age between 3-12 and > 12 weeks, the combined model had higher AUCs than the radiomic model in the training model (0.848 vs 0.837, p = 0.12) and internal test sets (0.818 vs 0.793, p < 0.003). In the external test set, the AUC of the nomogram-assisted radiologist was 0.966. CONCLUSION: The combined radiomic and clinical model showed good performance and has the potential to assist in the classification of rib fracture age. This will be beneficial for clinical practice and forensic decision-making. CRITICAL RELEVANCE STATEMENT: This study describes the development of a combined radiomic and clinical model with good performance in the classification of the age of rib fractures, with potential clinical and forensic applications. KEY POINTS: • Complex factors make it difficult to determine the age of a fracture. • Our model based on radiomic features performed well in classifying fracture age. • Associating the radiomic features with clinical features improved the model's performance.

6.
Opt Lett ; 48(24): 6404-6407, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099759

RESUMEN

A compact Tm:GdVO4 laser pumped by a 794 nm laser diode generated 6.09 W at 2.29 µm (3H4 → 3H5 Tm3+ transition) with a high slope efficiency of 30.8% and linear laser polarization (π). The polarized spectroscopic properties of Tm3+ in GdVO4 were also revised. The peak stimulated-emission cross section of Tm3+ is 2.97 × 10-20 cm2 at 2280 nm, corresponding to an emission bandwidth of 42 nm for π-polarized light.

7.
Bioengineering (Basel) ; 10(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38135930

RESUMEN

We aimed to compare the performance and interobserver agreement of radiologists manually segmenting images or those assisted by automatic segmentation. We further aimed to reduce interobserver variability and improve the consistency of radiomics features. This retrospective study included 327 patients diagnosed with prostate cancer from September 2016 to June 2018; images from 228 patients were used for automatic segmentation construction, and images from the remaining 99 were used for testing. First, four radiologists with varying experience levels retrospectively segmented 99 axial prostate images manually using T2-weighted fat-suppressed magnetic resonance imaging. Automatic segmentation was performed after 2 weeks. The Pyradiomics software package v3.1.0 was used to extract the texture features. The Dice coefficient and intraclass correlation coefficient (ICC) were used to evaluate segmentation performance and the interobserver consistency of prostate radiomics. The Wilcoxon rank sum test was used to compare the paired samples, with the significance level set at p < 0.05. The Dice coefficient was used to accurately measure the spatial overlap of manually delineated images. In all the 99 prostate segmentation result columns, the manual and automatic segmentation results of the senior group were significantly better than those of the junior group (p < 0.05). Automatic segmentation was more consistent than manual segmentation (p < 0.05), and the average ICC reached >0.85. The automatic segmentation annotation performance of junior radiologists was similar to that of senior radiologists performing manual segmentation. The ICC of radiomics features increased to excellent consistency (0.925 [0.888~0.950]). Automatic segmentation annotation provided better results than manual segmentation by radiologists. Our findings indicate that automatic segmentation annotation helps reduce variability in the perception and interpretation between radiologists with different experience levels and ensures the stability of radiomics features.

8.
Opt Express ; 31(16): 26368-26377, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710499

RESUMEN

The laser diode (LD)-pumped efficient high-power cascade Tm:GdVO4 laser simultaneously operating on the 3F4 → 3H6 (at ∼2 µm) and 3H4 → 3H5 (at ∼2.3 µm) Tm3+ transition was first reported in this paper. The cascade Tm:GdVO4 laser generated a maximum total continuous-wave (CW) laser output power of 8.42 W with a slope efficiency of 40%, out of which the maximum ∼2.3 µm CW laser output power was 2.88 W with a slope efficiency of 14%. To our knowledge, 2.88 W is the highest CW laser output power amongst the LD-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far.

9.
Opt Express ; 31(12): 18751-18764, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381308

RESUMEN

We report on the first laser operation of a disordered Tm:CaGdAlO4 crystal on the 3H4 → 3H5 transition. Under direct pumping at 0.79 µm, it generates 264 mW at 2.32 µm with a slope efficiency of 13.9% and 22.5% vs. incident and absorbed pump power, respectively, and a linear polarization (σ). Two strategies to overcome the bottleneck effect of the metastable 3F4 Tm3+ state leading to the ground-state bleaching are exploited: cascade lasing on the 3H4 → 3H5 and 3F4 → 3H6 transitions and dual-wavelength pumping at 0.79 and 1.05 µm combining the direct and upconversion pumping schemes. The cascade Tm-laser generates a maximum output power of 585 mW at 1.77 µm (3F4 → 3H6) and 2.32 µm (3H4 → 3H5) with a higher slope efficiency of 28.3% and a lower laser threshold of 1.43 W, out of which 332 mW are achieved at 2.32 µm. Under dual-wavelength pumping, further power scaling to 357 mW at at 2.32 µm is observed at the expense of increased laser threshold. To support the upconversion pumping experiment, excited-state absorption spectra of Tm3+ ions for the 3F4 → 3F2,3 and 3F4 → 3H4 transitions are measured for polarized light. Tm3+ ions in CaGdAlO4 exhibit broadband emission at 2.3 - 2.5 µm making this crystal promising for ultrashort pulse generation.

10.
Opt Express ; 31(12): 19666-19674, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381377

RESUMEN

The exceptional mechanical, electronic, topological, and optical properties, make bismuthene an ideal candidate for various applications in ultrafast saturation absorption and spintronics. Despite the extensive research efforts devoted to synthesizing this material, the introduction of defects, which can significantly affect its properties, remains a substantial obstacle. In this study, we investigate the transition dipole moment and joint density of states of bismuthene with/without single vacancy defect via energy band theory and interband transition theory. It is demonstrated that the existence of the single defect enhances the dipole transition and joint density of states at lower photon energies, ultimately resulting in an additional absorption peak in the absorption spectrum. Our results suggest that the manipulation of defects in bismuthene has enormous potential for improving the optoelectronic properties of this material.

11.
Opt Express ; 31(9): 13576-13584, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157242

RESUMEN

We report on the cascade continuous-wave operation of a diode-pumped Tm:YVO4 laser on the 3F4 → 3H6 (at ∼2 µm) and 3H4 → 3H5 (at ∼2.3 µm) Tm3+ transitions. Pumped with a fiber-coupled spatially multimode 794 nm AlGaAs laser diode, the 1.5 at.% Tm:YVO4 laser yielded a maximum total output power of 6.09 W with a slope efficiency of 35.7% out of which the 3H4 → 3H5 laser emission corresponded to 1.15 W at 2291-2295 and 2362-2371 nm with a slope efficiency of 7.9% and a laser threshold of 6.25 W.

12.
Opt Express ; 31(4): 6704-6712, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823920

RESUMEN

In this contribution, we measured the third-order nonlinear optical response of bismuth oxychloride (BiOCl) nanosheets with the open-aperture (OA) and the closed-aperture (CA) Z-scan techniques with a variable excitation intensity at 1.34 µm. The effective nonlinear absorption coefficient ßeff and the nonlinear refractive index n2 of the prepared BiOCl nanosheets with abundant oxygen vacancies were obtained under the excitation intensity. The third-order nonlinear optical susceptibility |χ(3)| was 1.64 × 10-9 esu. The nonlinear optical features of BiOCl enabled it as a superb saturable absorber for pulse laser generation. As a consequence, we demonstrated the first passively Q-switched Nd:GdVO4 laser with the BiOCl saturable absorber, producing a shortest pulse duration of 543 ns and a highest repetition rate of 227 kHz, leading to a maximum pulse energy of 74 nJ. Our findings show that BiOCl nanosheets with oxygen vacancies have large nonlinear optical sensitivities and can be exploited to generate optical pulses.

13.
Healthcare (Basel) ; 10(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421624

RESUMEN

Ordinal multi-instance learning (OMIL) deals with the weak supervision scenario wherein instances in each training bag are not only multi-class but also have rank order relationships between classes, such as breast cancer, which has become one of the most frequent diseases in women. Most of the existing work has generally been to classify the region of interest (mass or microcalcification) on the mammogram as either benign or malignant, while ignoring the normal mammogram classification. Early screening for breast disease is particularly important for further diagnosis. Since early benign lesion areas on a mammogram are very similar to normal tissue, three classifications of mammograms for the improved screening of early benign lesions are necessary. In OMIL, an expert will only label the set of instances (bag), instead of labeling every instance. When labeling efforts are focused on the class of bags, ordinal classes of the instance inside the bag are not labeled. However, recent work on ordinal multi-instance has used the traditional support vector machine to solve the multi-classification problem without utilizing the ordinal information regarding the instances in the bag. In this paper, we propose a method that explicitly models the ordinal class information for bags and instances in bags. Specifically, we specify a key instance from the bag as a positive instance of bags, and design ordinal minimum uncertainty loss to iteratively optimize the selected key instances from the bags. The extensive experimental results clearly prove the effectiveness of the proposed ordinal instance-learning approach, which achieves 52.021% accuracy, 61.471% sensitivity, 47.206% specificity, 57.895% precision, and an 59.629% F1 score on a DDSM dataset.

14.
Biomed Res Int ; 2022: 2085378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337842

RESUMEN

Objective: For people in high altitude areas, the shape of the femoral neck is different due to the different living environment. To deduce the optimal insertion angle and position of the cannulated screw using three-dimensional finite element technology in patients at high altitude. Methods: The data of 100 volunteers were used to establish a finite element model. The stress and displacement of cannulated screws of equilateral and oblique triangle screw placement in femoral neck fracture model and complete femoral neck model were evaluated. Results: On the narrowest plane, the average values of ∠A, B, and C were 47.63o, 75.49o, and 56.88o, respectively, and the shape was an oblique triangle. In complete femoral neck model, the maximum Von Mises stress of the three cannulated screws of equilateral triangle screw placement was slightly larger than oblique triangle screw placement, and this difference was more obvious in femoral neck fracture model. Under same loads, the overall maximum displacement of femur in oblique triangle screw placement was less than equilateral triangle screw placement in two models. Conclusions: For people in high-altitude areas, the three screws should be implanted in an oblique triangle configuration in cannulated screw treatment of femoral neck fractures.


Asunto(s)
Fracturas del Cuello Femoral , Humanos , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/cirugía , Cuello Femoral/diagnóstico por imagen , Cuello Femoral/cirugía , Análisis de Elementos Finitos , Fijación Interna de Fracturas/métodos , Altitud , Tornillos Óseos , Fenómenos Biomecánicos
15.
Opt Lett ; 47(19): 5016-5019, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181175

RESUMEN

An ytterbium-doped, single-stage, double-pass nonlinear fiber amplification system was fabricated for amplifying an 1100-nm mode-locking fiber laser. Pre-chirp managed amplification (PCMA) was applied in realizing the nonlinear amplification process with an all-polarization-maintaining (PM) fiber construction. The system can deliver 19.8-nJ, 58.7-fs, 24.4-MHz amplified signal pulses with a 10-dB spectral range spanning from 1049 nm to 1130 nm. Further experimental investigations were conducted in exploring the dynamics of the double-pass nonlinear amplification process. This compact 1100-nm ultrafast fiber laser can be implemented for multi-photon microscopy (MPM) with deep penetration depth.

16.
Opt Lett ; 47(13): 3271-3274, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776603

RESUMEN

In this Letter, the fabrication of large-scale (50.8 mm in diameter) few-layered MoS2 with physical vapor deposition on sapphire is described. Open-aperture Z-scan technology with a home-made excitation source at 2275 nm was applied to explore its nonlinear saturable absorption properties. The as-grown few-layered MoS2 membrane possessed a modulation depth of 17% and a saturable intensity of 1.185 MW cm-2. As a consequence, the deposited MoS2 membrane was exploited as a saturable absorber to realize a passively Q-switched Tm:YAP laser for the first time, to the best of our knowledge. Pulses as short as 316 ns were generated with a repetition rate of 228 kHz, corresponding to a peak power of 5.53 W. Results confirmed that the two-dimensional layered MoS2 could be beneficial for mid-infrared photonic applications.

17.
Front Oncol ; 12: 814312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311080

RESUMEN

Pancreatic cancer (PC), the third leading cause of cancer-related death in the U.S., is frequently found too late to be cured by traditional chemotherapy. Expression of B7 homolog 6 (B7H6), a member of the B7 family of immunoreceptors, has been found in PC and several other cancers. B7H6 is a ligand for cytotoxicity triggering receptor 3 (NKp30), which is expressed on NK cells. Here, we demonstrate that B7H6 can be detected in PC tissues but not normal organs. Its expression in patients associated significantly with tumor differentiation grade and lymphatic metastasis. The soluble form of B7H6 was detected in the PC patients' sera, and its concentration associated with tumor differentiation grade and tumor, node, metastasis (TNM) stages. Also, higher levels of B7H6 in PC patients' malignant tissues or serum correlated with shorter overall survival. In vitro, downregulation of B7H6 by CRISPR/Cas9 or siRNA technology had no significant impact on the viability or mobility of PC cells. Instead, knocking out B7H6 sensitized PC cells to NK-mediated cytotoxicity and cytokine production. These results indicate that B7H6 not only serves as a negative prognostic marker but also acts as an immune modulator in PC.

18.
Genes Genomics ; 44(5): 561-569, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35147897

RESUMEN

BACKGROUND: Rho GDP dissociation inhibitor 2 (RhoGDI2) has been shown to contribute to the aggressive phenotypes of human cancers, such as tumor metastasis and chemoresistance. OBJECTIVE: This study aimed to assess the effects of RhoGDI2 on tumor progression and chemoresistance in pancreatic cancer cells. METHODS: The expression of RhoGDI2 in pancreatic cancer cells was detected by Western blot analysis. Gain-of-function and loss-of-function approaches were done to examine the malignant phenotypes of the RhoGDI2-expressing or RhoGDI2-depleting cells. The correlation between RhoGDI2 and Snail was also analyzed. RESULTS: Differential expression of RhoGDI2 protein in pancreatic cancer cell lines was identified. Gain-of-function and loss-of-function experiments showed that RhoGDI2 induced the malignant phenotypes of pancreatic cancer cells, including proliferation, migration, invasion, and gemcitabine (GEM) chemoresistance. The upregulation of RhoGDI2 stimulated the expression of Snail, resulting in the altered expression of epithelial marker E-cadherin and mesenchymal marker Vimentin, which were characteristics of the tumorigenic activity of epithelial-mesenchymal transition. The expression of RhoGDI2 and Snail was upregulated in clinical tumor samples, and higher expression of RhoGDI2 or Snail was significantly associated with poor patient survival in pancreatic ductal adenocarcinoma (PDAC). CONCLUSION: The findings indicated that RhoGDI2 promoted GEM resistance and tumor progression in pancreatic cancer and that RhoGDI2 might be a potential therapeutic target in patients with PDAC.


Asunto(s)
Neoplasias Pancreáticas , Inhibidor beta de Disociación del Nucleótido Guanina rho , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pancreáticas/metabolismo , Fenotipo , Inhibidor beta de Disociación del Nucleótido Guanina rho/genética , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo , Neoplasias Pancreáticas
19.
Opt Lett ; 47(23): 6265-6268, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219223

RESUMEN

Compact diode-pumped continuous wave (CW) and passively Q switched Tm:YAG lasers operating on the 3H4 → 3H5 transition are demonstrated. Using a 3.5-at.% Tm:YAG crystal, a maximum CW output power of 1.49 W is achieved at 2330 nm with a slope efficiency of 10.1%. The first Q switched operation of the mid-infrared Tm:YAG laser around 2.3 µm is realized with a few-atomic-layer MoS2 saturable absorber. Pulses as short as 150 ns are generated at a repetition rate of 190 kHz, corresponding to a pulse energy of 1.07 µJ. Tm:YAG is an attractive material for diode-pumped CW and pulsed mid-infrared lasers emitting around 2.3 µm.

20.
Opt Lett ; 47(21): 5501-5504, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219254

RESUMEN

In this Letter, a watt-level laser diode (LD)-pumped ∼2.3-µm (on the 3H4→3H5 quasi-four-level transition) laser is reported based on a 1.5 at.% a-cut Tm:YVO4 crystal. The maximum continuous wave (CW) output power obtained is 1.89 W and 1.11 W with the maximum slope efficiency of 13.6% and 7.3% (versus the absorbed pump power) for the 1% and 0.5% transmittance of the output coupler, respectively. To the best of our knowledge, the CW output power of 1.89 W we obtained is the highest CW output power amongst the LD-pumped ∼2.3-µm Tm3+-doped lasers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...