Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(4)2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38675908

RESUMEN

Neutralizing antibodies (nAbs) play an important role against SARS-CoV-2 infections. Previously, we have reported one potent receptor binding domain (RBD)-binding nAb Ab08 against the SARS-CoV-2 prototype and a panel of variants, but Ab08 showed much less efficacy against the variants harboring the L452R mutation. To overcome the antibody escape caused by the L452R mutation, we generated several structure-based Ab08 derivatives. One derivative, Ab08-K99E, displayed the mostly enhanced neutralizing potency against the Delta pseudovirus bearing the L452R mutation compared to the Ab08 and other derivatives. Ab08-K99E also showed improved neutralizing effects against the prototype, Omicron BA.1, and Omicron BA.4/5 pseudoviruses. In addition, compared to the original Ab08, Ab08-K99E exhibited high binding properties and affinities to the RBDs of the prototype, Delta, and Omicron BA.4/5 variants. Altogether, our findings report an optimized nAb, Ab08-K99E, against SARS-CoV-2 variants and demonstrate structure-based optimization as an effective way for antibody development against pathogens.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/inmunología , COVID-19/virología , Pruebas de Neutralización , Unión Proteica , Células HEK293
2.
Nat Commun ; 15(1): 8, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167496

RESUMEN

The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.


Asunto(s)
Inositol , Proteínas de la Membrana , Animales , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Inositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Hidrolasas , Control de Calidad , Glicosilfosfatidilinositoles/química
3.
Cell Res ; 34(1): 47-57, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163846

RESUMEN

Monoamine neurotransmitters such as serotonin and dopamine are loaded by vesicular monoamine transporter 2 (VMAT2) into synaptic vesicles for storage and subsequent release in neurons. Impaired VMAT2 function underlies various neuropsychiatric diseases. VMAT2 inhibitors reserpine and tetrabenazine are used to treat hypertension, movement disorders associated with Huntington's Disease and Tardive Dyskinesia. Despite its physiological and pharmacological significance, the structural basis underlying VMAT2 substrate recognition and its inhibition by various inhibitors remains unknown. Here we present cryo-EM structures of human apo VMAT2 in addition to states bound to serotonin, tetrabenazine, and reserpine. These structures collectively capture three states, namely the lumen-facing, occluded, and cytosol-facing conformations. Notably, tetrabenazine induces a substantial rearrangement of TM2 and TM7, extending beyond the typical rocker-switch movement. These functionally dynamic snapshots, complemented by biochemical analysis, unveil the essential components responsible for ligand recognition, elucidate the proton-driven exchange cycle, and provide a framework to design improved pharmaceutics targeting VMAT2.


Asunto(s)
Tetrabenazina , Proteínas de Transporte Vesicular de Monoaminas , Humanos , Reserpina , Serotonina/metabolismo , Vesículas Sinápticas/metabolismo , Tetrabenazina/farmacología , Tetrabenazina/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
4.
PLoS Pathog ; 19(11): e1011789, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948454

RESUMEN

The COVID pandemic fueled by emerging SARS-CoV-2 new variants of concern remains a major global health concern, and the constantly emerging mutations present challenges to current therapeutics. The spike glycoprotein is not only essential for the initial viral entry, but is also responsible for the transmission of SARS-CoV-2 components via syncytia formation. Spike-mediated cell-cell transmission is strongly resistant to extracellular therapeutic and convalescent antibodies via an unknown mechanism. Here, we describe the antibody-mediated spike activation and syncytia formation on cells displaying the viral spike. We found that soluble antibodies against receptor binding motif (RBM) are capable of inducing the proteolytic processing of spike at both the S1/S2 and S2' cleavage sites, hence triggering ACE2-independent cell-cell fusion. Mechanistically, antibody-induced cell-cell fusion requires the shedding of S1 and exposure of the fusion peptide at the cell surface. By inhibiting S1/S2 proteolysis, we demonstrated that cell-cell fusion mediated by spike can be re-sensitized towards antibody neutralization in vitro. Lastly, we showed that cytopathic effect mediated by authentic SARS-CoV-2 infection remain unaffected by the addition of extracellular neutralization antibodies. Hence, these results unveil a novel mode of antibody evasion and provide insights for antibody selection and drug design strategies targeting the SARS-CoV-2 infected cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos , Membrana Celular , Glicoproteína de la Espiga del Coronavirus/genética
5.
Nat Commun ; 14(1): 5520, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684232

RESUMEN

Many eukaryotic receptors and enzymes rely on glycosylphosphatidylinositol (GPI) anchors for membrane localization and function. The transmembrane complex GPI-T recognizes diverse proproteins at a signal peptide region that lacks consensus sequence and replaces it with GPI via a transamidation reaction. How GPI-T maintains broad specificity while preventing unintentional cleavage is unclear. Here, substrates- and products-bound human GPI-T structures identify subsite features that enable broad proprotein specificity, inform catalytic mechanism, and reveal a multilevel safeguard mechanism against its promiscuity. In the absence of proproteins, the catalytic site is invaded by a locally stabilized loop. Activation requires energetically unfavorable rearrangements that transform the autoinhibitory loop into crucial catalytic cleft elements. Enzyme-proprotein binding in the transmembrane and luminal domains respectively powers the conformational rearrangement and induces a competent cleft. GPI-T thus integrates various weak specificity regions to form strong selectivity and prevent accidental activation. These findings provide important mechanistic insights into GPI-anchored protein biogenesis.


Asunto(s)
Aminoaciltransferasas , Glicosilfosfatidilinositoles , Humanos , Catálisis , Dominio Catalítico , Ligandos
6.
Theranostics ; 13(11): 3761-3780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441604

RESUMEN

Rationale: Sepsis is a potentially life-threatening condition caused by the body's response to a severe infection. Although the identification of multiple pathways involved in inflammation, tissue damage and aberrant healing during sepsis, there remain unmet needs for the development of new therapeutic strategies essential to prevent the reoccurrence of infection and organ injuries. Methods: Expression of Suppressor of Fused (Sufu) was evaluated by qRT-PCR, western blotting, and immunofluorescence in murine lung and peritoneal macrophages. The significance of Sufu expression in prognosis was assessed by Kaplan-Meier survival analysis. The GFP-TRAF6-expressing stable cell line (GFP-TRAF6 Blue cells) were constructed to evaluate phase separation of TRAF6. Phase separation of TRAF6 and the roles of Sufu in repressing TRAF6 droplet aggregation were analyzed by co-immunoprecipitation, immunofluorescence, Native-PAGE, FRAP and in vitro assays using purified proteins. The effects of Sufu on sepsis-induced lung inflammation were evaluated by cell function assays, LPS-induced septic shock model and polymicrobial sepsis-CLP mice model. Results: We found that Sufu expression is reduced in early response to lipopolysaccharide (LPS)-induced acute inflammation in murine lung and peritoneal macrophages. Deletion of Sufu aggravated LPS-induced and CLP (cecal ligation puncture)-induced lung injury and lethality in mice, and augmented LPS-induced proinflammatory gene expression in cultured macrophages. In addition, we identified the role of Sufu as a negative regulator of the Toll-Like Receptor (TLR)-triggered inflammatory response. We further demonstrated that Sufu directly interacts with TRAF6, thereby preventing oligomerization and autoubiquitination of TRAF6. Importantly, TRAF6 underwent phase separation during LPS-induced inflammation, which is essential for subsequent ubiquitination activation and NF-κB activity. Sufu inhibits the phase-separated TRAF6 droplet formation, preventing NF-κB activation upon LPS stimulation. In a septic shock model, TRAF6 depletion rescued the augmented inflammatory phenotype in mice with myeloid cell-specific deletion of Sufu. Conclusions: These findings implicated Sufu as an important inhibitor of TRAF6 in sepsis and suggest that therapeutics targeting Sufu-TRAF6 may greatly benefit the treatment of sepsis.


Asunto(s)
Neumonía , Sepsis , Choque Séptico , Ratones , Animales , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF , Lipopolisacáridos/farmacología , Inflamación , Sepsis/tratamiento farmacológico
8.
PLoS Pathog ; 19(1): e1011085, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706160

RESUMEN

Neutralizing antibodies (nAbs) are important assets to fight COVID-19, but most existing nAbs lose the activities against Omicron subvariants. Here, we report a human monoclonal antibody (Ab08) isolated from a convalescent patient infected with the prototype strain (Wuhan-Hu-1). Ab08 binds to the receptor-binding domain (RBD) with pico-molar affinity (230 pM), effectively neutralizes SARS-CoV-2 and variants of concern (VOCs) including Alpha, Beta, Gamma, Mu, Omicron BA.1 and BA.2, and to a lesser extent for Delta and Omicron BA.4/BA.5 which bear the L452R mutation. Of medical importance, Ab08 shows therapeutic efficacy in SARS-CoV-2-infected hACE2 mice. X-ray crystallography of the Ab08-RBD complex reveals an antibody footprint largely in the ß-strand core and away from the ACE2-binding motif. Negative staining electron-microscopy suggests a neutralizing mechanism through which Ab08 destructs the Spike trimer. Together, our work identifies a nAb with therapeutic potential for COVID-19.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/genética
9.
Methods Mol Biol ; 2564: 299-315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36107350

RESUMEN

Green fluorescent proteins (GFPs) have lightened up almost every aspect of biological research including protein sciences. In the field of membrane protein structural biology, GFPs have been used widely to monitor membrane protein localization, expression level, the purification process and yield, and the stability inside the cells and in the test tube. Of particular interest is the fluorescence-detector size-exclusion chromatography-based thermostability assay (FSEC-TS). By simple heating and FSEC, the generally applicable method allows rapid assessment of the thermostability of GFP-fused membrane proteins without purification. Here we describe the experimental details and some typical results for the FSEC-TS method.


Asunto(s)
Proteínas de la Membrana , Cromatografía en Gel , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo
10.
Nature ; 609(7927): 611-615, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917925

RESUMEN

Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas de Transporte de Membrana , Apoproteínas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ftalimidas/metabolismo , Conformación Proteica , Especificidad por Sustrato
12.
Front Microbiol ; 13: 875840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722331

RESUMEN

SARS-CoV-2 and its variants, such as the Omicron continue to threaten public health. The virus recognizes the host cell by attaching its Spike (S) receptor-binding domain (RBD) to the host receptor, ACE2. Therefore, RBD is a primary target for neutralizing antibodies and vaccines. Here, we report the isolation and biological and structural characterization of a single-chain antibody (nanobody) from RBD-immunized alpaca. The nanobody, named DL28, binds to RBD tightly with a K D of 1.56 nM and neutralizes the original SARS-CoV-2 strain with an IC50 of 0.41 µg mL-1. Neutralization assays with a panel of variants of concern (VOCs) reveal its wide-spectrum activity with IC50 values ranging from 0.35 to 1.66 µg mL-1 for the Alpha/Beta/Gamma/Delta and an IC50 of 0.66 µg mL-1 for the currently prevalent Omicron. Competition binding assays show that DL28 blocks ACE2-binding. However, structural characterizations and mutagenesis suggest that unlike most antibodies, the blockage by DL28 does not involve direct competition or steric hindrance. Rather, DL28 may use a "conformation competition" mechanism where it excludes ACE2 by keeping an RBD loop in a conformation incompatible with ACE2-binding.

13.
Nat Commun ; 13(1): 2617, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551457

RESUMEN

Eukaryotic cells are coated with an abundance of glycosylphosphatidylinositol anchor proteins (GPI-APs) that play crucial roles in fertilization, neurogenesis, and immunity. The removal of a hydrophobic signal peptide and covalent attachment of GPI at the new carboxyl terminus are catalyzed by an endoplasmic reticulum membrane GPI transamidase complex (GPI-T) conserved among all eukaryotes. Here, we report the cryo-electron microscopy (cryo-EM) structure of the human GPI-T at a global 2.53-Å resolution, revealing an equimolar heteropentameric assembly. Structure-based mutagenesis suggests a legumain-like mechanism for the recognition and cleavage of proprotein substrates, and an endogenous GPI in the structure defines a composite cavity for the lipid substrate. This elongated active site, stemming from the membrane and spanning an additional ~22-Å space toward the catalytic dyad, is structurally suited for both substrates which feature an amphipathic pattern that matches this geometry. Our work presents an important step towards the mechanistic understanding of GPI-AP biosynthesis.


Asunto(s)
Glicosilfosfatidilinositoles , Proteínas , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/química , Humanos , Señales de Clasificación de Proteína
14.
Int J Biol Macromol ; 209(Pt A): 1379-1388, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35460753

RESUMEN

SARS-CoV-2 engages with human cells through the binding of its Spike receptor-binding domain (S-RBD) to the receptor ACE2. Molecular blocking of this engagement represents a proven strategy to treat COVID-19. Here, we report a single-chain antibody (nanobody, DL4) isolated from immunized alpaca with picomolar affinity to RBD. DL4 neutralizes SARS-CoV-2 pseudoviruses with an IC50 of 0.101 µg mL-1 (6.2 nM). A crystal structure of the DL4-RBD complex at 1.75-Å resolution unveils the interaction detail and reveals a direct competition mechanism for DL4's ACE2-blocking and hence neutralizing activity. The structural information allows us to rationally design a mutant with higher potency. Our work adds diversity of neutralizing nanobodies against SARS-CoV-2 and should encourage protein engineering to improve antibody affinities in general.


Asunto(s)
SARS-CoV-2 , Anticuerpos de Dominio Único , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Unión Proteica , Ingeniería de Proteínas , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/química
15.
Curr Res Struct Biol ; 3: 312-323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901881

RESUMEN

Phosphatidylglycerol is a crucial phospholipid found ubiquitously in biological membranes of prokaryotic and eukaryotic cells. The phosphatidylglycerol phosphate (PGP) synthase (PgsA), a membrane-embedded enzyme, catalyzes the primary reaction of phosphatidylglycerol biosynthesis. Mutations in pgsA frequently correlate with daptomycin resistance in Staphylococcus aureus and other prevalent infectious pathogens. Here we report the crystal structures of S. aureus PgsA (SaPgsA) captured at two distinct states of the catalytic process, with lipid substrate (cytidine diphosphate-diacylglycerol, CDP-DAG) or product (PGP) bound to the active site within a trifurcated amphipathic cavity. The hydrophilic head groups of CDP-DAG and PGP occupy two different pockets in the cavity, inducing local conformational changes. An elongated membrane-exposed surface groove accommodates the fatty acyl chains of CDP-DAG/PGP and opens a lateral portal for lipid entry/release. Remarkably, the daptomycin resistance-related mutations mostly cluster around the active site, causing reduction of enzymatic activity. Our results provide detailed mechanistic insights into the dynamic catalytic process of PgsA and structural frameworks beneficial for development of antimicrobial agents targeting PgsA from pathogenic bacteria.

16.
EMBO Mol Med ; 13(12): e14544, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34672091

RESUMEN

An essential step for SARS-CoV-2 infection is the attachment to the host cell receptor by its Spike receptor-binding domain (RBD). Most of the existing RBD-targeting neutralizing antibodies block the receptor-binding motif (RBM), a mutable region with the potential to generate neutralization escape mutants. Here, we isolated and structurally characterized a non-RBM-targeting monoclonal antibody (FD20) from convalescent patients. FD20 engages the RBD at an epitope distal to the RBM with a KD of 5.6 nM, neutralizes SARS-CoV-2 including the current Variants of Concern such as B.1.1.7, B.1.351, P.1, and B.1.617.2 (Delta), displays modest cross-reactivity against SARS-CoV, and reduces viral replication in hamsters. The epitope coincides with a predicted "ideal" vulnerability site with high functional and structural constraints. Mutation of the residues of the conserved epitope variably affects FD20-binding but confers little or no resistance to neutralization. Finally, in vitro mode-of-action characterization and negative-stain electron microscopy suggest a neutralization mechanism by which FD20 destructs the Spike. Our results reveal a conserved vulnerability site in the SARS-CoV-2 Spike for the development of potential antiviral drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Glicoproteína de la Espiga del Coronavirus
17.
Front Mol Biosci ; 8: 701826, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557519

RESUMEN

The evolutionarily conserved Hedgehog (Hh) signaling pathway is crucial for programmed cell differentiation and proliferation. Dispatched (Disp) is a 12-transmembrane protein that plays a critical role in the Hedgehog (Hh) signaling pathway by releasing the dually lipidated ligand HhN from the membrane, a prerequisite step to the downstream signaling cascade. In this study, we focus on the Disp from water bear, a primitive animal known as the most indestructible on Earth. Using a zebrafish model, we show that the water bear homolog possesses the function of Disp. We have solved its structure to a 6.5-Å resolution using single-particle cryogenic electron microscopy. Consistent with the evolutional conservation of the pathway, the water bear Disp structure is overall similar to the previously reported structures of the fruit fly and human homologs. Although not revealing much detail at this resolution, the water bear Disp shows a different conformation compared to published structures, suggesting that they represent different functional snapshots.

18.
Nat Commun ; 12(1): 4635, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330908

RESUMEN

SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 µg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/ultraestructura , Anticuerpos Antivirales/farmacología , Anticuerpos Antivirales/ultraestructura , Sitios de Unión/inmunología , COVID-19/prevención & control , COVID-19/virología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Femenino , Humanos , Espectrometría de Masas/métodos , Mesocricetus , Ratones Endogámicos C57BL , Pruebas de Neutralización , Unión Proteica/efectos de los fármacos , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo
19.
Structure ; 29(11): 1286-1294.e6, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34174188

RESUMEN

The 12-transmembrane protein Patched (Ptc1) acts as a suppressor for Hedgehog (Hh) signaling by depleting sterols in the cytoplasmic membrane leaflet that are required for the activation of downstream regulators. The positive modulator Hh inhibits Ptc1's transporter function by binding to Ptc1 and its co-receptors, which are locally concentrated in invaginated microdomains known as caveolae. Here, we reconstitute the mouse Ptc1 into lipid nanodiscs and determine its structure using single-particle cryoelectron microscopy. The structure is overall similar to those in amphipol and detergents but displays various conformational differences in the transmembrane region. Although most particles show monomers, we observe Ptc1 dimers with distinct interaction patterns and different membrane curvatures, some of which are reminiscent of caveolae. We find that an extramembranous "hand-shake" region rich in hydrophobic and aromatic residues mediates inter-Ptc1 interactions under different membrane curvatures. Our data provide a plausible framework for Ptc1 clustering in the highly curved caveolae.


Asunto(s)
Caveolas/metabolismo , Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Lípidos , Receptor Patched-1/metabolismo , Animales , Microscopía por Crioelectrón , Ratones , Transducción de Señal/fisiología
20.
PLoS Pathog ; 17(3): e1009328, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33657135

RESUMEN

A key step to the SARS-CoV-2 infection is the attachment of its Spike receptor-binding domain (S RBD) to the host receptor ACE2. Considerable research has been devoted to the development of neutralizing antibodies, including llama-derived single-chain nanobodies, to target the receptor-binding motif (RBM) and to block ACE2-RBD binding. Simple and effective strategies to increase potency are desirable for such studies when antibodies are only modestly effective. Here, we identify and characterize a high-affinity synthetic nanobody (sybody, SR31) as a fusion partner to improve the potency of RBM-antibodies. Crystallographic studies reveal that SR31 binds to RBD at a conserved and 'greasy' site distal to RBM. Although SR31 distorts RBD at the interface, it does not perturb the RBM conformation, hence displaying no neutralizing activities itself. However, fusing SR31 to two modestly neutralizing sybodies dramatically increases their affinity for RBD and neutralization activity against SARS-CoV-2 pseudovirus. Our work presents a tool protein and an efficient strategy to improve nanobody potency.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Afinidad de Anticuerpos , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...