Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1200373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901431

RESUMEN

The brain structural connectome is generated by a collection of white matter fiber bundles constructed from diffusion weighted MRI (dMRI), acting as highways for neural activity. There has been abundant interest in studying how the structural connectome varies across individuals in relation to their traits, ranging from age and gender to neuropsychiatric outcomes. After applying tractography to dMRI to get white matter fiber bundles, a key question is how to represent the brain connectome to facilitate statistical analyses relating connectomes to traits. The current standard divides the brain into regions of interest (ROIs), and then relies on an adjacency matrix (AM) representation. Each cell in the AM is a measure of connectivity, e.g., number of fiber curves, between a pair of ROIs. Although the AM representation is intuitive, a disadvantage is the high-dimensionality due to the large number of cells in the matrix. This article proposes a simpler tree representation of the brain connectome, which is motivated by ideas in computational topology and takes topological and biological information on the cortical surface into consideration. We demonstrate that our tree representation preserves useful information and interpretability, while reducing dimensionality to improve statistical and computational efficiency. Applications to data from the Human Connectome Project (HCP) are considered and code is provided for reproducing our analyses.

2.
Nat Methods ; 20(9): 1379-1387, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592182

RESUMEN

Spatially resolved genomic technologies have allowed us to study the physical organization of cells and tissues, and promise an understanding of local interactions between cells. However, it remains difficult to precisely align spatial observations across slices, samples, scales, individuals and technologies. Here, we propose a probabilistic model that aligns spatially-resolved samples onto a known or unknown common coordinate system (CCS) with respect to phenotypic readouts (for example, gene expression). Our method, Gaussian Process Spatial Alignment (GPSA), consists of a two-layer Gaussian process: the first layer maps observed samples' spatial locations onto a CCS, and the second layer maps from the CCS to the observed readouts. Our approach enables complex downstream spatially aware analyses that are impossible or inaccurate with unaligned data, including an analysis of variance, creation of a dense three-dimensional (3D) atlas from sparse two-dimensional (2D) slices or association tests across data modalities.


Asunto(s)
Genómica , Modelos Estadísticos , Humanos , Distribución Normal
3.
J Mach Learn Res ; 242023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37484701

RESUMEN

Gaussian processes are widely employed as versatile modelling and predictive tools in spatial statistics, functional data analysis, computer modelling and diverse applications of machine learning. They have been widely studied over Euclidean spaces, where they are specified using covariance functions or covariograms for modelling complex dependencies. There is a growing literature on Gaussian processes over Riemannian manifolds in order to develop richer and more flexible inferential frameworks for non-Euclidean data. While numerical approximations through graph representations have been well studied for the Matérn covariogram and heat kernel, the behaviour of asymptotic inference on the parameters of the covariogram has received relatively scant attention. We focus on asymptotic behaviour for Gaussian processes constructed over compact Riemannian manifolds. Building upon a recently introduced Matérn covariogram on a compact Riemannian manifold, we employ formal notions and conditions for the equivalence of two Matérn Gaussian random measures on compact manifolds to derive the parameter that is identifiable, also known as the microergodic parameter, and formally establish the consistency of the maximum likelihood estimate and the asymptotic optimality of the best linear unbiased predictor. The circle is studied as a specific example of compact Riemannian manifolds with numerical experiments to illustrate and corroborate the theory.

4.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778332

RESUMEN

Spatially-resolved genomic technologies have shown promise for studying the relationship between the structural arrangement of cells and their functional behavior. While numerous sequencing and imaging platforms exist for performing spatial transcriptomics and spatial proteomics profiling, these experiments remain expensive and labor-intensive. Thus, when performing spatial genomics experiments using multiple tissue slices, there is a need to select the tissue cross sections that will be maximally informative for the purposes of the experiment. In this work, we formalize the problem of experimental design for spatial genomics experiments, which we generalize into a problem class that we call structured batch experimental design. We propose approaches for optimizing these designs in two types of spatial genomics studies: one in which the goal is to construct a spatially-resolved genomic atlas of a tissue and another in which the goal is to localize a region of interest in a tissue, such as a tumor. We demonstrate the utility of these optimal designs, where each slice is a two-dimensional plane, on several spatial genomics datasets.

6.
Front Neurosci ; 16: 848654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784847

RESUMEN

Spatial navigation and orientation are emerging as promising markers for altered cognition in prodromal Alzheimer's disease, and even in cognitively normal individuals at risk for Alzheimer's disease. The different APOE gene alleles confer various degrees of risk. The APOE2 allele is considered protective, APOE3 is seen as control, while APOE4 carriage is the major known genetic risk for Alzheimer's disease. We have used mouse models carrying the three humanized APOE alleles and tested them in a spatial memory task in the Morris water maze. We introduce a new metric, the absolute winding number, to characterize the spatial search strategy, through the shape of the swim path. We show that this metric is robust to noise, and works for small group samples. Moreover, the absolute winding number better differentiated APOE3 carriers, through their straighter swim paths relative to both APOE2 and APOE4 genotypes. Finally, this novel metric supported increased vulnerability in APOE4 females. We hypothesized differences in spatial memory and navigation strategies are linked to differences in brain networks, and showed that different genotypes have different reliance on the hippocampal and caudate putamen circuits, pointing to a role for white matter connections. Moreover, differences were most pronounced in females. This departure from a hippocampal centric to a brain network approach may open avenues for identifying regions linked to increased risk for Alzheimer's disease, before overt disease manifestation. Further exploration of novel biomarkers based on spatial navigation strategies may enlarge the windows of opportunity for interventions. The proposed framework will be significant in dissecting vulnerable circuits associated with cognitive changes in prodromal Alzheimer's disease.

7.
Pac Symp Biocomput ; 27: 266-277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34890155

RESUMEN

Gaussian processes (GPs) are a versatile nonparametric model for nonlinear regression and have been widely used to study spatiotemporal phenomena. However, standard GPs offer limited interpretability and generalizability for datasets with naturally occurring hierarchies. With large-scale, rapidly-updating electronic health record (EHR) data, we want to study patient trajectories across diverse patient cohorts while preserving patient subgroup structure. In this work, we partition our cohort of over 2000 COVID-19 patients by sex and ethnicity. We develop and apply a hierarchical Gaussian process and a mixture of experts (MOE) hierarchical GP model to fit patient trajectories on clinical markers of disease progression. A case study for albumin, an effective predictor of COVID-19 patient outcomes, highlights the predictive performance of these models. These hierarchical spatiotemporal models of EHR data bring us a step closer toward our goal of building flexible approaches to capture patient data that can be used in real-time systems*.


Asunto(s)
COVID-19 , Estudios de Cohortes , Biología Computacional , Registros Electrónicos de Salud , Humanos , SARS-CoV-2
8.
Entropy (Basel) ; 22(3)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33286080

RESUMEN

This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models.

9.
J R Stat Soc Series B Stat Methodol ; 82(5): 1249-1271, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35845818

RESUMEN

Current tools for multivariate density estimation struggle when the density is concentrated near a non-linear subspace or manifold. Most approaches require the choice of a kernel, with the multivariate Gaussian kernel by far the most commonly used. Although heavy-tailed and skewed extensions have been proposed, such kernels cannot capture curvature in the support of the data. This leads to poor performance unless the sample size is very large relative to the dimension of the data. The paper proposes a novel generalization of the Gaussian distribution, which includes an additional curvature parameter. We refer to the proposed class as Fisher-Gaussian kernels, since they arise by sampling from a von Mises-Fisher density on the sphere and adding Gaussian noise. The Fisher-Gaussian density has an analytic form and is amenable to straightforward implementation within Bayesian mixture models by using Markov chain Monte Carlo sampling. We provide theory on large support and illustrate gains relative to competitors in simulated and real data applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...