Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 271: 106937, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38728928

RESUMEN

In aquaculture around the world, sulfamonomethoxine (SMM), a long-acting antibiotic that harms microalgae, is widely employed in combination with trimethoprim (TMP), a synergist. However, their combined toxicity to microalgae under long-term exposures at environmentally relevant concentrations remains poorly understood. Therefore, we studied the effects of SMM single-exposures and co-exposures (SMM:TMP=5:1) at concentrations of 5 µg/L and 500 µg/L on Chlorella pyrenoidosa within one aquacultural drainage cycle (15 days). Photosynthetic activity and N assimilating enzyme activities were employed to evaluate microalgal nutrient assimilation. Oxidative stress and flow cytometry analysis for microalgal proliferation and death jointly revealed mechanisms of inhibition and subsequent self-adaptation. Results showed that exposures at 5 µg/L significantly inhibited microalgal nutrient assimilation and induced oxidative stress on day 7, with a recovery to levels comparable to the control by day 15. This self-adaptation and over 95 % removal of antibiotics jointly contributed to promoting microalgal growth and proliferation while reducing membrane-damaged cells. Under 500 µg/L SMM single-exposure, microalgae self-adapted to interferences on nutrient assimilation, maintaining unaffected growth and proliferation. However, over 60 % of SMM remained, leading to sustained oxidative stress and apoptosis. Remarkably, under 500 µg/L SMM-TMP co-exposure, the synergistic toxicity of SMM and TMP significantly impaired microalgal nutrient assimilation, reducing the degradation efficiency of SMM to about 20 %. Consequently, microalgal growth and proliferation were markedly inhibited, with rates of 9.15 % and 17.7 %, respectively, and a 1.36-fold increase in the proportion of cells with damaged membranes was observed. Sustained and severe oxidative stress was identified as the primary cause of these adverse effects. These findings shed light on the potential impacts of antibiotic mixtures at environmental concentrations on microalgae, facilitating responsible evaluation of the ecological risks of antibiotics in aquaculture ponds.


Asunto(s)
Microalgas , Estrés Oxidativo , Sulfamonometoxina , Trimetoprim , Contaminantes Químicos del Agua , Trimetoprim/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microalgas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sulfamonometoxina/toxicidad , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Nutrientes/metabolismo , Fotosíntesis/efectos de los fármacos , Antibacterianos/toxicidad
2.
J Hazard Mater ; 470: 134279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613960

RESUMEN

The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.


Asunto(s)
Acuicultura , Chlorella , Glucosa , Microalgas , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/metabolismo , Sulfametoxazol/química , Microalgas/metabolismo , Chlorella/metabolismo , Glucosa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Lisina/metabolismo , Lisina/química , Biodegradación Ambiental , Redes y Vías Metabólicas , Antibacterianos/metabolismo , Antibacterianos/química
3.
Environ Sci Technol ; 57(43): 16219-16231, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847491

RESUMEN

Disinfection byproducts (DBPs) in drinking water are mainly exposed to the human body after oral ingestion and degradation in the gastrointestinal tract. The role of gastrointestinal degradation in the toxic effects of DBPs still needs further investigation. In this study, the degradation of five categories of DBPs (22 DBPs) in the stomach and small intestine was investigated based on a semicontinuous steady-state gastrointestinal simulation system, and 22 DBPs can be divided into three groups based on their residual proportions. The degradation of chloroacetonitrile (CAN), dibromoacetic acid (DBAA), and tetrabromopyrrole (FBPy) was further analyzed based on the Simulator of the Human Intestinal Microbial Ecosystem inoculating the gut microbiota, and approximately 60% of CAN, 45% of DBAA, and 80% of FBPy were degraded in the stomach and small intestine, followed by the complete degradation of remaining DBPs in the colon. Meanwhile, gastrointestinal degradation can reduce oxidative stress-mediated DNA damage and apoptosis induced by DBPs in DLD-1 cells, but the toxicity of DBPs did not disappear with the complete degradation of DBPs, possibly because of their interferences on gut microbiota. This study provides new insights into investigating the gastrointestinal toxic effects and mechanisms of DBPs through oral exposure.


Asunto(s)
Desinfectantes , Agua Potable , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Desinfectantes/toxicidad , Desinfectantes/análisis , Desinfección , Tracto Gastrointestinal/química , Halogenación , Contaminantes Químicos del Agua/toxicidad
4.
Sci Total Environ ; 903: 166581, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634728

RESUMEN

Expanding aquaculture has generated pollutants like fishery drugs in wastewater, which affects the aquatic environments and hinders sustainable development of aquaculture. To evaluate the occurrence, mass fluxes and production factors of fishery drugs in aquaculture, full-aquaculture-cycle monitoring in finfish and crustacean wastewater was conducted in the lower Yangtze River Basin, and 28 pesticides and 15 antibiotics were detected. The results showed that individual fishery drugs varied from ppt to ppb levels. Among them, sulfonamides were dominant with a mean concentration of 105.95 ± 4.13 ng·L-1 in finfish aquacultural wastewater, and insecticides were prevailing in crustacean aquacultural wastewater with a content of 146.56 ± 0.66 ng·L-1. Since the susceptibility to finfish disease determined the aquaculture practice, there were significant differences between two types of aquacultural wastewater. Finfish aquacultural wastewater contained more drugs and reached peak earlier in rapid-growth period, yet crustacean aquacultural wastewater peaked at the harvest period, to prevent against disease. Meanwhile, higher ecological risk, especially for florfenicol, were found in finfish wastewater. With 6 production factors from Good Aquaculture Practice, the gross yield was the most influential factor of drug mass flux, explaining 98 % variance by stepwise regression. Apart from increasing concentrations of fishery drugs in wastewater, regional high-yield aquaculture also significantly impacted the corresponding mass flux. As estimated by linear regression, 1.63 tons of target drugs would be discharged by 1 Mt. aquatic products, and 7.77 tons were discharged from aquaculture in the lower Yangtze River Basin in 2021. This is the first report to quantify mass fluxes of fishery drugs and to highlight gross yield as the most influential factor, which provides guidance for the supervision and regulation of sustainable aquaculture.

5.
Front Microbiol ; 13: 991818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177464

RESUMEN

Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts (DBPs) have been widely found in drinking water and are receiving more and more attentions because of their high cytotoxicity, genotoxicity, and developmental toxicity. However, the effects of HNMs exposure on the intestinal tract and intestinal flora remain unknown. This study comprehensively determined the effects of trichloronitromethane, bromonitromethane, and bromochloronitromethane exposure on the intestinal tract and intestinal flora. Results showed that the three HNMs induced intestinal oxidative stress and inflammatory response. Further, HNMs exposure could change the diversities and community structure of intestinal flora, thereby triggering intestinal flora dysbiosis, which might be associated with the intestinal damage such as oxidative stress and inflammation. The intestinal flora dysbiosis was accompanied with mark alterations in function of intestinal flora, such as carbohydrate, lipid, and amino acid metabolisms. This research provides a new insight into studying the toxicity of HNMs exposure based on intestinal flora, which will further improve the health risk assessment of DBPs in drinking water.

6.
Comput Intell Neurosci ; 2021: 2545151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552625

RESUMEN

With the significant increase of social informatization, the emerging information technology represented by machine vision has been applied to more and more scenes. Among them, the detection and extraction of human skeleton in a dance video based on this technology has a huge market demand in education and training. However, the existing detection and extraction technology has the problems of slow recognition speed and low extraction accuracy. Therefore, this paper proposes a neural network based on particle swarm optimization to detect and extract human skeletons in a dance video. Through the research and test on different data sets, it is found that the neural network based on particle swarm optimization algorithm has good detection and extraction ability and has high accuracy for the detection and recognition of human skeleton points. Among them, on all MPII data sets, the average accuracy of PSO-LSTM proposed in this paper is 3.9% higher than that of other optimal algorithms; on the PoseTrack data set, the average accuracy of detection and extraction is improved by 2.3%. The above results show that the neural network based on particle swarm optimization has fast detection speed and good extraction accuracy and can be used for the detection and extraction of human skeleton in a dance video.


Asunto(s)
Baile , Algoritmos , Humanos , Redes Neurales de la Computación , Esqueleto
7.
Sci Total Environ ; 749: 142049, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33370921

RESUMEN

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its primary metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) are frequently detected in aquatic environments. However, information regarding the biotoxicity of these compounds to bivalves is limited. We explored the multilevel physiological responses of Corbicula fluminea to TDCIPP and BDCIPP. The results indicated that TDCIPP/BDCIPP bioaccumulation in bivalves was positively correlated with their hydrophobicity. Furthermore, the higher body burden of TDCIPP in digestive glands led to significantly higher levels of ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), and P-glycoprotein (p < 0.05). Owing to different molecular structures of inducers, upregulations of cyp4, gstm1, and abcb1 mRNA exhibited different sensitivities to TDCIPP and BDCIPP. Although Phase-I and Phase-II biotransformation and the multixenobiotic resistance (MXR) system were activated to protect bivalves from TDCIPP or BDCIPP, digestive glands produced large amounts of reactive oxygen species (ROS). Moreover, oxidative stress, the percentage of apoptotic cells in digestive glands, and inhibition of siphoning behaviour in TDCIPP treatments were higher than those in BDCIPP treatments (p < 0.05), indicating that TDCIPP was more toxic to bivalves than BDCIPP. Lower bioaccumulation and rapid metabolism of BDCIPP in vivo may contribute to alleviating its toxicity. This research establishes a foundation for further understanding the differences between the toxic mechanisms of TDCIPP and its metabolites.


Asunto(s)
Corbicula , Retardadores de Llama , Animales , Organofosfatos , Compuestos Organofosforados , Estrés Oxidativo , Fosfatos
9.
Aquat Toxicol ; 226: 105559, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32652412

RESUMEN

High nitrate (NO3--N) concentration is a growing aquatic risk concern worldwide. However, adverse effects of high NO3--N concentration on submerged macrophytes-epiphytic biofilms are unclear. In this study, the alterations in physiological changes, biofilms formation and chemical compositions were investigated on leaves of Vallisneria asiatica exposed to different NO3--N concentrations. The findings showed that 10 mg L-1NO3--N resulted in low photosynthetic efficiency by inhibiting chlorophyll content 26.2 % and decreased intrinsic efficiency of photosystem II significantly at 14th day post treatment. Malondialdehyde, several antioxidant enzyme activities (i.e., superoxide dismutase, peroxidase and catalase), and secondary metabolites (i.e., phenolic compounds and anthocyanin) were all significantly up-regulated with 10 mg L-1NO3--N, implied oxidative stress were stimulated. However, no significant alterations in these indicators were observed with 5 mg L-1NO3--N. Compared to control, 10 mg L-1NO3--N concentration significantly stimulated microbes growth in biofilm and reduced the roughness of leaf-biofilms surface, but it had little effect on the biofilms distribution (from single clone to blocks) as revealed by scanning electron microscope and multifractal analysis. Results from X-ray photoelectron spectroscopy analysis showed that the percentage of P, Cl, K and the ratio of O1 (-O-) /O2 (C = O) were higher in leaves of control than treatments with 10 mg L-1NO3--N, indicating that 10 mg L-1NO3--N concentration exhibited significant inhibition of chemical activity and nutrient uptake of the leaf surfaces. Overall, these results demonstrated that high NO3--N does stimulate the biofilm growth and can cause negative impacts on submerged macrophytes growth.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Hydrocharitaceae/efectos de los fármacos , Nitratos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Biopelículas/efectos de los fármacos , Catalasa/metabolismo , Clorofila/metabolismo , Hydrocharitaceae/crecimiento & desarrollo , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiología , Malondialdehído/metabolismo , Peroxidasas/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...