Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Biochem Pharmacol ; 229: 116517, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236935

RESUMEN

Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disorder characterized by abnormal elevation in hormone levels, with currently lacking effective treatment options. N-3 polyunsaturated fatty acids (PUFA) have broad pharmacological activity and play a beneficial role in the development of PCOS. In this study, we observed that n-3 PUFA-eicosatrienoic acid (ETA) improves the estrous cycle and ovarian morphology in dehydroepiandrosterone (DHEA)-induced PCOS mice, particularly serum hormone levels. Additionally, it suppresses the expression of CYP19A1 and E2 synthesis in human granulosa-like tumor cell line (KGN) cells. Further investigation revealed that ETA significantly upregulates the expression of CD36, cAMP, P-PKA, and FOXO1 in KGN cells and mouse ovaries to lower E2 levels. This conclusion was supported by inhibiting CD36 and FOXO1 at both the mouse and cellular levels. Additionally, ETA treatment decreased the expression of ESR1, Kiss1, Gnrh in the hypothalamus, and GnRHR, Lhß, Egr1, Pitx1, Sf1 in the pituitary of PCOS mice. No differences were observed after ETA treatment in the CD36 and FOXO1 inhibitor groups, indicating that ETA improves PCOS mice by regulating the hypothalamic-pituitary axis through E2 synthesis inhibition. In summary, we have elucidated for the first time the mechanism by which CD36 regulates E2 synthesis in ovarian granulosa cells and demonstrated that ETA activates the CD36 receptor to inhibit E2 synthesis through the cAMP/PKA/FOXO1/CYP19A1 signaling pathway, thereby improving hormonal imbalance and treating PCOS. This provides a new strategy for the effective prevention and treatment of PCOS.

2.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4054-4068, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307757

RESUMEN

C_(20)-diterpenoid alkaloids are mainly distributed in plants of genus Aconitum, Delphinium, and Consolida in the Ranunculaceae. Their chemical structures are mainly categorized into nine types such as atisines, denudatines, hetidines, and hetisines. Bioactivity studies have shown that C_(20)-diterpenoid alkaloids have exhibited superior anti-tumor, analgesic, antiarrhythmic, and anti-inflammatory effects. In this review, the chemical structures and biological activities of 190 C_(20)-diterpenoid alkaloids reported in the Ranunculaceae from 2002 to the present were summarized, so as to provide a reference for the subsequent research on C_(20)-diterpenoid alkaloids in plants of Ranunculaceae.


Asunto(s)
Alcaloides , Diterpenos , Ranunculaceae , Alcaloides/química , Alcaloides/farmacología , Diterpenos/química , Diterpenos/farmacología , Animales , Humanos , Ranunculaceae/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Estructura Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química
3.
Sensors (Basel) ; 24(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39205065

RESUMEN

The precise recognition of entire classroom meta-actions is a crucial challenge for the tailored adaptive interpretation of student behavior, given the intricacy of these actions. This paper proposes a Dynamic Position Embedding-based Model for Student Classroom Complete Meta-Action Recognition (DPE-SAR) based on the Video Swin Transformer. The model utilizes a dynamic positional embedding technique to perform conditional positional encoding. Additionally, it incorporates a deep convolutional network to improve the parsing ability of the spatial structure of meta-actions. The full attention mechanism of ViT3D is used to extract the potential spatial features of actions and capture the global spatial-temporal information of meta-actions. The proposed model exhibits exceptional performance compared to baseline models in action recognition as observed in evaluations on public datasets and smart classroom meta-action recognition datasets. The experimental results confirm the superiority of the model in meta-action recognition.

4.
Front Genet ; 15: 1366138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050250

RESUMEN

Background: Insulin-like Growth Factor-1 (IGF-1) plays a crucial role in the growth and metabolic functions of various tissues and cells in the body. Recently, there has been increased attention to the association between IGF-1 and osteoarthritis (OA). However, there is controversy in current research regarding the correlation between IGF-1 levels and OA. Furthermore, the specific manner in which Body Mass Index (BMI), a key risk factor for OA, mediates the impact of IGF-1 levels on OA remains unclear. Object: This study aimed to investigate the bidirectional causal link between IGF-1 levels and OA in four body regions, and to explore how BMI influences the impact of IGF-1 on these types of OA. Method: Two-sample Mendelian Randomization (MR) and its combined forms were utilized to investigate the bidirectional relationship between IGF-1 levels and four types of OA, as well as the mediating role of BMI in the impact of IGF-1 levels on OA. Data from various Genome-Wide Association Studies (GWAS) and multiple analytical methods, including inverse variance weighted, MR-Egger regression, and weighted median were utilized. Sensitivity analyses, such as MR-Egger intercept, Cochran Q test, leave-one-out, and MR-PRESSO, were conducted to ensure the robustness of the results. Results: Higher IGF-1 levels are correlated with an increased risk for knee (OR, 1.07; 95% CI, 1.01-1.03; p = 1.49e-01; q = 9.86e-03), hip (OR, 1.13; 95% CI, 1.06-1.20; p = 7.61e-05; q = 7.44e-05), and hand OA (OR, 1.09; 95% CI, 1.01-1.17; p = 1.88e-02; q = 1.15e-02), but not spine OA but not spine OA (OR, 1.05; 95% CI, 0.99-1.10; p = 9.20e-02; q = 5.52e-02). Different types of OA do not affect IGF-1 levels. BMI mediates the increase in OA risk associated with higher IGF-1, including indirect spine OA risk through BMI. Conclusion: The study elucidates the bidirectional causality between IGF-1 levels and OA in various body parts, highlighting BMI's mediating role in the impact of IGF-1 levels on OA. This provides valuable insights for OA prevention, diagnosis, and treatment strategies. Future research will expand our study to include a broader spectrum of ethnicities and explore the underlying mechanisms involved.

5.
Sci Rep ; 14(1): 16229, 2024 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004624

RESUMEN

Previous research on the association between Family Doctor Contract Services (FDCS) and health has only considered a single indicator of health and has not considered the endogeneity of independent variables. This study aimed to evaluate the association from a multidimensional perspective of the health of middle-aged and older people using the instrumental variables method and determine the underlying mechanisms. Using data from the 2018 China Health and Retirement Longitudinal Study surveys, a total of 19,438 sample was obtained. Health was measured by health related-quality of life (HR-QoL), subjective well-being, and cognitive function. The instrumental variables method was used to estimate the association. Mediation analysis was employed to analyze the underlying mechanisms. The results of the instrumental variables method showed a correlation between FDCS and health, such as HR-QoL (η = 33.714, p < 0.01), subjective well-being (η = 1.106, p < 0.05), and cognitive function (η = 4.133, p < 0.05). However, we found no evidence that FDCS improved physical health. We also identified reduced utilization of healthcare services and increased social activities as mediators of the effect of FDCS on health. The Chinese government should improve incentive-based initiatives to improve the quality of FDCS. Moreover, more attention needs to be paid to the multidimensional health of middle-aged and older people, especially vulnerable groups, such as older individuals and those in rural areas.


Asunto(s)
Servicios Contratados , Calidad de Vida , Humanos , China , Femenino , Masculino , Anciano , Persona de Mediana Edad , Estudios Longitudinales , Estado de Salud , Cognición
6.
Biology (Basel) ; 13(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927247

RESUMEN

Mammary gland bioreactors are promising methods for recombinant protein production. Human neutrophil peptide 1 (HNP1) exhibits antibacterial and immune-modulating properties. This study aims to establish a method to generate goats secreting HNP1 using the mammary gland as bioreactors. HNP1 transgenic goats were generated by using CRISPR/Cas9 technology to knock-in (KI) the HNP1 sequence into exon 7 of the goat ß-casein (CSN2) gene under the control of the CSN2 promoter. One-cell stage embryos were cytoplasmically injected with a mixture of Cas9 mRNA, sgRNA, and a homologous plasmid including the T2A-HNP1 sequences, followed by transfer to recipient goats. A total of 22 live offspring goats were delivered, and 21 of these goats (95.45%) exhibited targeted edits at the CSN2 locus, and 2 female goats (9.09%) demonstrated successful HNP1 integration. Western blot and ELISA analyses confirmed the presence of HNP1 protein at high levels in the milk of these HNP1-positive goats, with mean concentrations of 22.10 µg/mL and 0.0092 µg/mL during the initial 60 days of lactation. Furthermore, milk from these transgenic goats exhibited notable antibacterial activity against Escherichia coli and Staphylococcus aureus, demonstrating the functionality of the expressed HNP1 protein. In conclusion, we established an efficient method for developing new transgenic goat lines as a mammary gland bioreactor, and the bioactive HNP1 protein secreted by the transgenic goat has the potential to combat microbial resistance.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124549, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38870694

RESUMEN

Ferulic acid ethyl ester (FAEE) is an essential raw material for the formulation of drugs for cardiovascular and cerebrovascular diseases and leukopenia. It is also used as a fixed aroma agent for food production due to its high pharmacological activity. In this study, the interaction of FAEE with Human serum albumin (HSA) and Lysozyme (LZM) was characterized by multi-spectrum and molecular dynamics simulations at four different temperatures. Additionally, the quenching mechanism of FAEE-HSA and FAEE-LZM were explored. Meanwhile, the binding constants, binding sites, thermodynamic parameters, molecular dynamics, molecular docking binding energy, and the influence of metal ions in the system were evaluated. The results of Synchronous fluorescence spectroscopy, UV-vis spectroscopy, CD, three-dimensional fluorescence spectrum, and resonance light scattering showed that the microenvironment of HSA and LZM and the protein conformation changed in the presence of FAEE. Furthermore, the effects of some common metal ions on the binding constants of FAEE-HSA and FAEE-LZM were investigated. Overall, the experimental results provide a theoretical basis for promoting the application of FAEE in the cosmetics, food, and pharmaceutical industries and significant guidance for food safety, drug design, and development.


Asunto(s)
Ácidos Cumáricos , Simulación del Acoplamiento Molecular , Muramidasa , Unión Proteica , Albúmina Sérica Humana , Espectrometría de Fluorescencia , Humanos , Muramidasa/química , Muramidasa/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Simulación de Dinámica Molecular , Termodinámica , Sitios de Unión , Dicroismo Circular , Espectrofotometría Ultravioleta , Ácidos Cafeicos
8.
Front Plant Sci ; 15: 1370440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708392

RESUMEN

Apple replant disease (ARD), caused by Fusarium pathogens, is a formidable threat to the renewal of apple varieties in China, necessitating the development of effective and sustainable control strategies. In this study, the bacterial strain BA-4 was isolated from the rhizosphere soil of healthy apple trees in a replanted orchard, demonstrating a broad-spectrum antifungal activity against five crucial apple fungal pathogens. Based on its morphology, physiological and biochemical traits, utilization of carbon sources, and Gram stain, strain BA-4 was tentatively identified as Bacillus amyloliquefaciens. Phylogenetic analysis using 16S rDNA and gyrB genes conclusively identified BA-4 as B. amyloliquefaciens. In-depth investigations into B. amyloliquefaciens BA-4 revealed that the strain possesses the capacity to could secrete cell wall degrading enzymes (protease and cellulase), produce molecules analogous to indole-3-acetic acid (IAA) and siderophores, and solubilize phosphorus and potassium. The diverse attributes observed in B. amyloliquefaciens BA-4 underscore its potential as a versatile microorganism with multifaceted benefits for both plant well-being and soil fertility. The extracellular metabolites produced by BA-4 displayed a robust inhibitory effect on Fusarium hyphal growth and spore germination, inducing irregular swelling, atrophy, and abnormal branching of fungal hyphae. In greenhouse experiments, BA-4 markedly reduced the disease index of Fusarium-related ARD, exhibiting protective and therapeutic efficiencies exceeding 80% and 50%, respectively. Moreover, BA-4 demonstrated plant-promoting abilities on both bean and Malus robusta Rehd. (MR) seedlings, leading to increased plant height and primary root length. Field experiments further validated the biocontrol effectiveness of BA-4, demonstrating its ability to mitigate ARD symptoms in MR seedlings with a notable 33.34% reduction in mortality rate and improved biomass. Additionally, BA-4 demonstrates robust and stable colonization capabilities in apple rhizosphere soil, particularly within the 10-20 cm soil layer, which indicates that it has long-term effectiveness potential in field conditions. Overall, B. amyloliquefaciens BA-4 emerges as a promising biocontrol agent with broad-spectrum antagonistic capabilities, positive effects on plant growth, and strong colonization abilities for the sustainable management of ARD in apple cultivation.

9.
Sci Adv ; 10(21): eadj8184, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781332

RESUMEN

Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.


Asunto(s)
Microbiota , Océanos y Mares , Filogenia , ARN Ribosómico 16S , Agua de Mar , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Bacterias/genética , Bacterias/clasificación
10.
Biochem Biophys Res Commun ; 720: 150102, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38759302

RESUMEN

The emergence of drug-resistant bacteria, facilitated by metallo-beta-lactamases (MBLs), presents a significant obstacle to the effective use of antibiotics in the management of clinical drug-resistant bacterial infections. AFM-1 is a MBL derived from Alcaligenes faecalis and shares 86% homology with the NDM-1 family. Both AFM-1 and NDM-1 demonstrate the ability to hydrolyze ampicillin and other ß-lactam antibiotics, however, their substrate affinities vary, and the specific reason for this variation remains unknown. We present the high-resolution structure of AFM-1. The active center of AFM-1 binds two zinc ions, and the conformation of the key amino acid residues in the active center is in accordance with that of NDM-1. However, the substrate-binding pocket of AFM-1 is considerably smaller than that of NDM-1. Additionally, the mutation of amino acid residues in the Loop3 region, as compared to NDM-1, results in the formation of a dense hydrophobic patch comprised of hydrophobic amino acid residues in this area, which facilitates substrate binding. Our findings lay the foundation for understanding the molecular mechanism of AFM-1 with a high affinity for substrates and provide a novel theoretical foundation for addressing the issue of drug resistance caused by B1 MBLs.


Asunto(s)
Modelos Moleculares , beta-Lactamasas , beta-Lactamasas/química , beta-Lactamasas/metabolismo , beta-Lactamasas/ultraestructura , beta-Lactamasas/genética , Alcaligenes faecalis/enzimología , Alcaligenes faecalis/química , Conformación Proteica , Zinc/química , Zinc/metabolismo , Cristalografía por Rayos X , Dominio Catalítico , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Secuencia de Aminoácidos , Sitios de Unión
11.
Virus Res ; 345: 199378, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643857

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Virus de la Influenza B , Ratones Endogámicos BALB C , SARS-CoV-2 , Vacunas Atenuadas , Animales , Ratones , Virus de la Influenza B/inmunología , Virus de la Influenza B/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Administración Intranasal , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Inmunoglobulina A/sangre , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Carga Viral , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología
12.
World J Diabetes ; 15(3): 552-564, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591089

RESUMEN

BACKGROUND: The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus (T2DM) is currently controversial. It is unknown whether this association can be gene realized across different populations. AIM: To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM. METHODS: We searched PubMed, Embase, Web of Science, Cochrane Library, Medline, Baidu Academic, China National Knowledge Infrastructure, China Biomedical Liter-ature Database, and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12, 2022. Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature. RESULTS: Twelve case-control studies (including 11273 cases and 11654 controls) met our inclusion criteria. In the full population, allelic model [odds ratio (OR): 1.19; 95% confidence interval (95%CI): 1.09-1.29; P < 0.0001], recessive model (OR: 1.20; 95%CI: 1.11-1.29; P < 0.0001), dominant model (OR: 1.27. 95%CI: 1.14-1.42; P < 0.0001), and codominant model (OR: 1.36; 95%CI: 1.15-1.60; P = 0.0003) (OR: 1.22; 95%CI: 1.10-1.36; P = 0.0002) indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM. In stratified analysis, this association was confirmed in Asian populations: allelic model (OR: 1.25; 95%CI: 1.13-1.37; P < 0.0001), recessive model (OR: 1.29; 95%CI: 1.11-1.49; P = 0.0007), dominant model (OR: 1.35; 95%CI: 1.20-1.52; P < 0.0001), codominant model (OR: 1.49; 95%CI: 1.22-1.81; P < 0.0001) (OR: 1.26; 95%CI: 1.16-1.36; P < 0.0001). In non-Asian populations, this association was not significant: Allelic model (OR: 1.06, 95%CI: 0.98-1.14; P = 0.12), recessive model (OR: 1.04; 95%CI: 0.75-1.42; P = 0.83), dominant model (OR: 1.06; 95%CI: 0.98-1.15; P = 0.15), codominant model (OR: 1.08; 95%CI: 0.82-1.42; P = 0.60. OR: 1.15; 95%CI: 0.95-1.39; P = 0.14). CONCLUSION: KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population. Carriers of the C allele had a higher risk of T2DM. This association was not significant in non-Asian populations.

13.
J Ethnopharmacol ; 325: 117897, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336180

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Quhan Zhiwang decoction (BQZD), a formula in traditional Chinese medicine (TCM), effectively delays bone destruction in rheumatoid arthritis (RA) patients. However, its chemical constituents, absorbed components, and metabolites remain unrevealed, and its mechanism in treating bone destruction in RA needs further investigation. AIM OF THE STUDY: Our objective is to identify the chemical constituents, absorbed components, and metabolites of BQZD and explore the potential mechanisms of BQZD in treating bone destruction in RA. MATERIALS AND METHODS: This study systematically identified the chemical constituents, absorbed components, and metabolites of BQZD using ultra-performance liquid chromatography with Q-Exactive Orbitrap mass spectrometry combined with parallel reaction monitoring. The absorbed components and metabolites were subjected to network pharmacology analysis to predict the potential mechanisms of BQZD in treating bone destruction in RA. The in vivo anti-osteoclastogenic and underlying mechanism were further verified in collagen-induced arthritis (CIA) rats. RESULTS: A total of 182 compounds were identified in BQZD, 27 of which were absorbed into plasma and organs and 42 metabolites were identified in plasma and organs. The KEGG analysis revealed that MAPK signaling pathway was highly prioritized. BQZD treatment attenuated paw swelling and the arthritis index; suppressed synovial hyperplasia, bone destruction, and osteoclast differentiation; and inhibited the levels of TNF-α, IL-1ß, and IL-6 in CIA rats. Mechanically, BQZD significantly decreased the protein expression levels of TRAF6, NFATc1, p-JNK, and p-p38, which might be related to 9 absorbed components and 1 metabolite. CONCLUSION: This study revealed the key active components and metabolites of BQZD. BQZD exhibits bone-protective effects via TRAF6/p38/JNK MAPK pathway, which may be associated with 9 absorbed components and 1 metabolite.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Humanos , Ratas , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Farmacología en Red , Factor 6 Asociado a Receptor de TNF , Artritis Reumatoide/tratamiento farmacológico , Medicina Tradicional China , Artritis Experimental/tratamiento farmacológico
14.
Acta Biomater ; 176: 267-276, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296014

RESUMEN

The Bouligand structure has been observed in a variety of biological materials, such as lamellar bone and exoskeleton of lobsters. It is a hierarchical and non-homogeneous architecture that exhibits excellent damage-resistant performance. This paper presents a multiscale fracture model considering the material inhomogeneity, the multiscale property, and the anisotropy to reveal the toughening mechanisms in the Bouligand structure. Firstly, the macro and micro constitutive properties of this composite are derived. Then, a multiscale fracture model is developed to characterize the local stress intensity factors and the energy release rates at the crack front of twisted cracks. Our results demonstrate that the decrease in the local energy release rate can be attributed to two-step mechanisms. The first mechanism is that the multiscale structure and the material inhomogeneity cause a release of stress near the initial crack tip. The second mechanism is that the twisted crack leads to the transformation from single-mode loading to mixed-mode loading, which enhances the fracture toughness. These results can not only reveal the toughening mechanism of the Bouligand structure but also provide guidelines for the design of high-performance composites. STATEMENT OF SIGNIFICANCE: Biological materials in nature often possess excellent mechanical properties that have not been achieved by synthetic materials. Bioinspired Bouligand structures provide prototypes for designing high-performance materials. In this study, we propose a multiscale theoretical fracture model to investigate the fracture properties of Bouligand structures with twisted cracks. We systematically consider the roles of material inhomogeneity, anisotropy, and multiscale properties. Our analysis demonstrates that the remarkable toughness of Bouligand structures results from the combined effects of material inhomogeneity and twisted cracks. This research contributes to unveiling the secret behind the outstanding toughness of Bouligand structures and provides inspiration for the development of novel designs for man-made composites.


Asunto(s)
Fracturas Óseas , Humanos , Huesos , Modelos Teóricos
15.
Mol Breed ; 44(1): 4, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225950

RESUMEN

Improving quality is an essential goal of rice breeding and production. However, rice quality is not solely determined by genotype, but is also influenced by the environment. Phenotype plasticity refers to the ability of a given genotype to produce different phenotypes under different environmental conditions, which can be a representation of the stability of traits. Seven quality traits of 141 hybrid combinations, deriving from the test-crossing of 7 thermosensitive genic male sterile (TGMS) and 25 restorer lines, were evaluated at 5 trial sites with intermittent sowing of three to five in Southern China. In the Yangtze River Basin, it was observed that delaying the sowing time of hybrid rice combinations leads to an improvement in their overall quality. Twelve parents were identified to have lower plasticity general combing ability (GCA) values with increased ability to produce hybrids with a more stable quality. The parents with superior quality tend to exhibit lower GCA values for plasticity. The genome-wide association study (GWAS) identified 13 and 15 quantitative trait loci (QTLs) associated with phenotype plasticity and BLUP measurement, respectively. Notably, seven QTLs simultaneously affected both phenotype plasticity and BLUP measurement. Two cloned rice quality genes, ALK and GL7, may be involved in controlling the plasticity of quality traits in hybrid rice. The direction of the genetic effect of the QTL6 (ALK) on alkali spreading value (ASV) plasticity varies in different cropping environments. This study provides novel insights into the dynamic genetic basis of quality traits in response to different cropping regions, cultivation practices, and changing climates. These findings establish a foundation for precise breeding and production of stable and high-quality rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01442-3.

16.
Nat Genet ; 56(2): 294-305, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267607

RESUMEN

The human placenta has a vital role in ensuring a successful pregnancy. Despite the growing body of knowledge about its cellular compositions and functions, there has been limited research on the heterogeneity of the billions of nuclei within the syncytiotrophoblast (STB), a multinucleated entity primarily responsible for placental function. Here we conducted integrated single-nucleus RNA sequencing and single-nucleus ATAC sequencing analyses of human placentas from early and late pregnancy. Our findings demonstrate the dynamic heterogeneity and developmental trajectories of STB nuclei and their correspondence with human trophoblast stem cell (hTSC)-derived STB. Furthermore, we identified transcription factors associated with diverse STB nuclear lineages through their gene regulatory networks and experimentally confirmed their function in hTSC and trophoblast organoid-derived STBs. Together, our data provide insights into the heterogeneity of human STB and represent a valuable resource for interpreting associated pregnancy complications.


Asunto(s)
Multiómica , Placenta , Embarazo , Humanos , Femenino , Trofoblastos , Núcleo Celular/genética , Factores de Transcripción , Diferenciación Celular
17.
J Agric Food Chem ; 72(1): 339-350, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150707

RESUMEN

Atopic dermatitis (AD) is a complex inflammatory skin disease induced by multiple factors. AD can also cause intestinal inflammation and disorders of the gut microbiota. Ginseng is a kind of edible and medicinal plant; its main active components are ginsenosides. Ginsenosides have a variety of anti-inflammatory effects and regulate the gut microbiota; however, their role in AD and the underlying mechanisms are unclear. In this study, we found that intragastric administration of ginsenoside F2 improved AD-like skin symptoms and reduced inflammatory cell infiltration, serum immunoglobulin E levels, and mRNA expression of inflammatory cytokines in AD mice. 16s rRNA sequencing analysis showed that ginsenoside F2 altered the intestinal microbiota structure and enriched the short-chain fatty acid-producing microbiota in AD mice. Metabolomic analysis revealed that ginsenoside F2 significantly increased the propionic acid (Pa) content of feces and serum in AD mice, which was positively correlated with significant enrichment of Parabacteroides goldsteinii and Lactobacillus plantarum in the intestines. Pa inhibits inflammatory responses in the gut and skin of AD mice through the G-protein-coupled receptor43/NF-κB pathway, thereby improving skin AD symptoms. These results revealed, for the first time, the mechanism by which ginsenoside F2 improves AD through the Pa (a metabolite of intestinal microbiota)-gut-skin axis.


Asunto(s)
Dermatitis Atópica , Microbioma Gastrointestinal , Ginsenósidos , Ratones , Animales , Dermatitis Atópica/tratamiento farmacológico , Ginsenósidos/farmacología , ARN Ribosómico 16S
18.
Theriogenology ; 216: 20-29, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154203

RESUMEN

In mammals, N6-methyladenosine (m6A) stands out as one of the most abundant internal mRNA modifications and plays a crucial role in follicular development. Nonetheless, the precise mechanism by which the demethylase FTO regulates the progression of the goat luteinizing granulosa cells (LGCs) cycle remains to be elucidated. In our study, we primarily assessed the protein and mRNA expression levels of genes using Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), cell proliferation via EdU, cell viability with CCK-8, and apoptosis and cell cycle progression through flow cytometry. Here, the results demonstrated that knockdown of FTO significantly enhanced apoptosis, impeded cell proliferation, and increased autophagy levels in goat LGCs. Furthermore, the silencing of FTO substantially reduced cyclin D1 (CCND1) expression through the recognition and degradation of YTHDF2, consequently prolonging the cell cycle progression. This study sheds light on the mechanism by which FTO demethylation governs cell cycle progression by controlling the expression of CCND1 in goat LGCs, underscoring the dynamic role of m6A modification in the regulation of cell cycle progression.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Ciclina D1 , Cabras , Células de la Granulosa , Animales , Femenino , División Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Cabras/genética , Cabras/metabolismo , Células de la Granulosa/metabolismo , ARN Mensajero/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
19.
Small ; 20(22): e2309176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38150625

RESUMEN

Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.

20.
Carbohydr Polym ; 326: 121610, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142072

RESUMEN

Inspired by "disappear after reading", a time-modulated encryption hydrogel was synthesized by carboxymethyl cellulose with carbon quantum dots. Carboxymethyl cellulose in this system stabilized carbon quantum dots, which ensured the whole hydrogel worked well. The encryption/decryption of information depended on pH adjustment, application of EDTA and Cr (VI). Furthermore, an in-depth analysis of the fluorescence change mechanism uncovered that fluorescence quenching was potentially influenced by internal filtering effects and static quenching, which involved the amino, carboxyl, and hydroxyl groups present within the hydrogel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA