Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Radiat Res ; 63(3): 319-330, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35276012

RESUMEN

The accumulation of oxidative DNA lesions in neurons is associated with neurodegenerative disorders and diseases. Ogg1 (8-oxoG DNA glycosylase-1) is a primary repair enzyme to excise 7,8-dihydro-8-oxoguanine (8-oxoG), the most frequent mutagenic base lesion produced by oxidative DNA damage. We have developed ogg1-deficient medaka by screening with a high resolution melting (HRM) assay in Targeting-Induced Local Lesions In Genomes (TILLING) library. In this study, we identified that ogg1-deficient embryos have smaller brains than wild-type during the period of embryogenesis and larvae under normal conditions. To reveal the function of ogg1 when brain injury occurs during embryogenesis, we examined the induction of apoptosis in brains after exposure to gamma-rays with 10 Gy (137Cs, 7.3 Gy/min.) at 24 h post-irradiation both in wild-type and ogg1-deficient embryos. By acridine orange (AO) assay, clustered apoptosis in irradiated ogg1-deficient embryonic brains were distributed in a similar manner to those of irradiated wild-type embryos. To evaluate possible differences of gamma-ray induced apoptosis in both types of embryonic brains, we constructed 3D images of the whole brain based on serial histological sections. This analysis identified that the clustered apoptotic volume was about 3 times higher in brain of irradiated ogg1-deficient embryos (n = 3) compared to wild-type embryos (n = 3) (P = 0.04), suggesting that irradiation-induced apoptosis in medaka embryonic brain can be suppressed in the presence of functional ogg1. Collectively, reconstruction of 3D images can be a powerful approach to reveal slight differences in apoptosis induction post-irradiation.


Asunto(s)
Oryzias , Animales , Apoptosis/efectos de la radiación , Encéfalo/efectos de la radiación , Radioisótopos de Cesio , Reparación del ADN
2.
Biology (Basel) ; 9(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291358

RESUMEN

It has been widely accepted that prenatal exposure to ionizing radiation (IR) can affect embryonic and fetal development in mammals, depending on dose and gestational age of the exposure, however, the precise machinery underlying the IR-induced disturbance of embryonic development is still remained elusive. In this study, we examined the effects of gamma-ray irradiation on blastula embryos of medaka and found transient delay of brain development even when they hatched normally with low dose irradiation (2 and 5 Gy). In contrast, irradiation of higher dose of gamma-rays (10 Gy) killed the embryos with malformations before hatching. We then conducted targeted irradiation of blastoderm with a collimated carbon-ion microbeam. When a part (about 4, 10 and 25%) of blastoderm cells were injured by lethal dose (50 Gy) of carbon-ion microbeam irradiation, loss of about 10% or less of blastoderm cells induced only the transient delay of brain development and the embryos hatched normally, whereas embryos with about 25% of their blastoderm cells were irradiated stopped development at neurula stage and died. These findings strongly suggest that the developmental disturbance in the IR irradiated embryos is determined by the proportion of severely injured cells in the blastoderm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA