Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12601-12608, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38687243

RESUMEN

The burgeoning necessity to discover new methodologies for the synthesis of long-chain hydrocarbons and oxygenates, independent of traditional reliance on high-temperature, high-pressure, and fossil fuel-based carbon, is increasingly urgent. In this context, we introduce a nonthermal plasma-based strategy for the initiation and propagation of long-chain carbon growth from biogas constituents (CO2 and CH4). Utilizing a plasma reactor operating at atmospheric room temperature, our approach facilitates hydrocarbon chain growth up to C40 in the solid state (including oxygenated products), predominantly when CH4 exceeds CO2 in the feedstock. This synthesis is driven by the hydrogenation of CO2 and/or amalgamation of CHx radicals. Global plasma chemistry modeling underscores the pivotal role of electron temperature and CHx radical genesis, contingent upon varying CO2/CH4 ratios in the plasma system. Concomitant with long-chain hydrocarbon production, the system also yields gaseous products, primarily syngas (H2 and CO), as well as liquid-phase alcohols and acids. Our finding demonstrates the feasibility of atmospheric room-temperature synthesis of long-chain hydrocarbons, with the potential for tuning the chain length based on the feed gas composition.

2.
Environ Sci Technol ; 57(30): 10911-10918, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37440474

RESUMEN

Microplastics have been detected in human stool, lungs, and placentas, which have direct exposure to the external environment through various body cavities, including the oral/anal cavity and uterine/vaginal cavity. Crucial data on microplastic exposure in completely enclosed human organs are still lacking. Herein, we used a laser direct infrared chemical imaging system and scanning electron microscopy to investigate whether microplastics exist in the human heart and its surrounding tissues. Microplastic specimens were collected from 15 cardiac surgery patients, including 6 pericardia, 6 epicardial adipose tissues, 11 pericardial adipose tissues, 3 myocardia, 5 left atrial appendages, and 7 pairs of pre- and postoperative venous blood samples. Microplastics were not universally present in all tissue samples, but nine types were found across five types of tissue with the largest measuring 469 µm in diameter. Nine types of microplastics were also detected in pre- and postoperative blood samples with a maximum diameter of 184 µm, and the type and diameter distribution of microplastics in the blood showed alterations following the surgical procedure. Moreover, the presence of poly(methyl methacrylate) in the left atrial appendage, epicardial adipose tissue, and pericardial adipose tissue cannot be attributed to accidental exposure during surgery, providing direct evidence of microplastics in patients undergoing cardiac surgery. Further research is needed to examine the impact of surgery on microplastic introduction and the potential effects of microplastics in internal organs on human health.

3.
Nat Commun ; 14(1): 474, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36710270

RESUMEN

Electroreduction of carbon dioxide with renewable electricity holds promise for achieving net-zero carbon emissions. Single-site catalysts have been reported to catalyze carbon-carbon (C-C) coupling-the indispensable step for more valuable multi-carbon (C2+) products-but were proven to be transformed in situ to metallic agglomerations under working conditions. Here, we report a stable single-site copper coordination polymer (Cu(OH)BTA) with periodic neighboring coppers and it exhibits 1.5 times increase of C2H4 selectivity compared to its metallic counterpart at 500 mA cm-2. In-situ/operando X-ray absorption, Raman, and infrared spectroscopies reveal that the catalyst remains structurally stable and does not undergo a dynamic transformation during reaction. Electrochemical and kinetic isotope effect analyses together with computational calculations show that neighboring Cu in the polymer provides suitably-distanced dual sites that enable the energetically favorable formation of an *OCCHO intermediate post a rate-determining step of CO hydrogenation. Accommodation of this intermediate imposes little changes of conformational energy to the catalyst structure during the C-C coupling. We stably operate full-device CO2 electrolysis at an industry-relevant current of one ampere for 67 h in a membrane electrode assembly. The coordination polymers provide a perspective on designing molecularly stable, single-site catalysts for electrochemical CO2 conversion.

4.
Adv Mater ; 35(10): e2209567, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36584285

RESUMEN

Upgrading carbon dioxide/monoxide to multi-carbon C2+ products using renewable electricity offers one route to more sustainable fuel and chemical production. One of the most appealing products is acetate, the profitable electrosynthesis of which demands a catalyst with higher efficiency. Here, a coordination polymer (CP) catalyst is reported that consists of Cu(I) and benzimidazole units linked via Cu(I)-imidazole coordination bonds, which enables selective reduction of CO to acetate with a 61% Faradaic efficiency at -0.59 volts versus the reversible hydrogen electrode at a current density of 400 mA cm-2 in flow cells. The catalyst is integrated in a cation exchange membrane-based membrane electrode assembly that enables stable acetate electrosynthesis for 190 h, while achieving direct collection of concentrated acetate (3.3 molar) from the cathodic liquid stream, an average single-pass utilization of 50% toward CO-to-acetate conversion, and an average acetate full-cell energy efficiency of 15% at a current density of 250 mA cm-2 .

5.
Nanoscale ; 15(3): 1092-1098, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36562426

RESUMEN

Direct electrochemical conversion of CO2 to C2H4 with high selectivity is highly desirable for lowering CO2 emissions. However, limited by the slow *CO dimerization step at a single active site, it is difficult for current electrocatalysts to further improve the selectivity toward C2H4. Here we report a tandem catalyst PDI-Cu/Cu with Cu-N sites and Cu clusters, synthesized by uniformly dispersing Cu clusters on a coordination polymer PDI-Cu, which has atomically isolated Cu-N sites. This tandem catalyst, which has an optimal content of Cu clusters, shows more than 2 times the enhancement in C2H4 production compared with that of the non-tandem catalyst PDI/Cu. Density functional theory (DFT) calculations support the tandem reaction mechanism, where Cu-N sites first reduce CO2 into highly concentrated CO and then the CO migrates to the surfaces of Cu clusters for further conversion into C2H4, decoupling the complex C2H4 generation pathway at single active sites into a two-step tandem reaction. This work offers a rational approach to design electrocatalysts for further boosting the selectivity of the CO2RR to C2+ products via a tandem route.

6.
Nanoscale Horiz ; 8(2): 146-157, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36512394

RESUMEN

Recently, electrocatalytic reactions involving oxygen, nitrogen, water, and carbon dioxide have been developed to substitute conventional chemical processes, with the aim of producing clean energy, fuels and chemicals. A deepened understanding of catalyst structures, active sites and reaction mechanisms plays a critical role in improving the performance of these reactions. To this end, in situ/operando characterisations can be used to visualise the dynamic evolution of nanoscale materials and reaction intermediates under electrolysis conditions, thus enhancing our understanding of heterogeneous electrocatalytic reactions. In this review, we summarise the state-of-the-art in situ characterisation techniques used in electrocatalysis. We categorise them into three sections based on different working principles: microscopy, spectroscopy, and other characterisation techniques. The capacities and limits of the in situ characterisation techniques are discussed in each section to highlight the present-day horizons and guide further advances in the field, primarily aiming at the users of these techniques. Finally, we look at challenges and possible strategies for further development of in situ techniques.

7.
Adv Mater ; 34(51): e2207088, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36245317

RESUMEN

High-rate conversion of carbon dioxide (CO2 ) to ethylene (C2 H4 ) in the CO2 reduction reaction (CO2 RR) requires fine control over the phase boundary of the gas diffusion electrode (GDE) to overcome the limit of CO2 solubility in aqueous electrolytes. Here, a metal-organic framework (MOF)-functionalized GDE design is presented, based on a catalysts:MOFs:hydrophobic substrate materials layered architecture, that leads to high-rate and selective C2 H4 production in flow cells and membrane electrode assembly (MEA) electrolyzers. It is found that using electroanalysis and operando X-ray absorption spectroscopy (XAS), MOF-induced organic layers in GDEs augment the local CO2 concentration near the active sites of the Cu catalysts. MOFs with different CO2 adsorption abilities are used, and the stacking ordering of MOFs in the GDE is varied. While sputtering Cu on poly(tetrafluoroethylene) (PTFE) (Cu/PTFE) exhibits 43% C2 H4 Faradaic efficiency (FE) at a current density of 200 mA cm- 2 in a flow cell, 49% C2 H4 FE at 1 A cm- 2 is achieved on MOF-augmented GDEs in CO2 RR. MOF-augmented GDEs are further evaluated in an MEA electrolyzer, achieving a C2 H4 partial current density of 220 mA cm-2 for CO2 RR and 121 mA cm-2 for the carbon monoxide reduction reaction (CORR), representing 2.7-fold and 15-fold improvement in C2 H4 production rate, compared to those obtained on bare Cu/PTFE.

8.
Nat Commun ; 13(1): 819, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145110

RESUMEN

Nitrogen-doped graphene-supported single atoms convert CO2 to CO, but fail to provide further hydrogenation to methane - a finding attributable to the weak adsorption of CO intermediates. To regulate the adsorption energy, here we investigate the metal-supported single atoms to enable CO2 hydrogenation. We find a copper-supported iron-single-atom catalyst producing a high-rate methane. Density functional theory calculations and in-situ Raman spectroscopy show that the iron atoms attract surrounding intermediates and carry out hydrogenation to generate methane. The catalyst is realized by assembling iron phthalocyanine on the copper surface, followed by in-situ formation of single iron atoms during electrocatalysis, identified using operando X-ray absorption spectroscopy. The copper-supported iron-single-atom catalyst exhibits a CO2-to-methane Faradaic efficiency of 64% and a partial current density of 128 mA cm-2, while the nitrogen-doped graphene-supported one produces only CO. The activity is 32 times higher than a pristine copper under the same conditions of electrolyte and bias.

9.
ChemSusChem ; 15(1): e202102010, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714607

RESUMEN

Electrochemical CO2 methanation powered by renewable electricity provides a promising approach to utilizing CO2 in the form of a high-energy-density, clean fuel. Cu nanoclusters have been predicted by theoretical calculations to improve methane selectivity. Direct electrochemical reduction of Cu-based metal-organic frameworks (MOFs) results in large-size Cu nanoparticles which favor multi-carbon products. This study concerns an electrochemical oxidation-reduction method to prepare Cu clusters from MOFs. The derived Cu clusters exhibit a faradaic efficiency of 51.2 % for CH4 with a partial current density of >150 mA cm-2 . High-resolution microscopy, in situ X-ray absorption spectroscopy, in situ Raman spectroscopy, and a range of ex situ spectroscopies indicate that the distinctive CH4 selectivity is due to the sub-nanometer size of the derived materials, as well as stabilization of the clusters by residual ligands of the pristine MOF. This work offers a new insight into steering product selectivity of Cu by an electrochemical processing method.

10.
Nano Lett ; 21(20): 8924-8932, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34410722

RESUMEN

CO2 electroreduction powered by renewable electricity represents a promising method to enclose anthropogenic carbon cycle. Current catalysts display high selectivity toward the desired product only over a narrow potential window due primarily to unoptimized intermediate binding. Here, we report a functional ligand modification strategy in which palladium nanoparticles are encapsulated inside metal-organic frameworks with 2,2'-bipyridine organic linkers to tune intermediate binding and thus to sustain a highly selective CO2-to-CO conversion over widened potential window. The catalyst exhibits CO faradaic efficiency in excess of 80% over a potential window from -0.3 to -1.2 V and reaches the maxima of 98.2% at -0.8 V. Mechanistic studies show that the 2,2'-bipyridine on Pd surface reduces the binding strength of both *H and *CO, a too strong binding of which leads to competing formate production and CO poison, respectively, and thus enhances the selectivity and stability of CO product.


Asunto(s)
Dióxido de Carbono , Nanopartículas del Metal , Catálisis , Electricidad , Paladio
11.
Small ; 17(29): e2100602, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34121332

RESUMEN

2D bismuth nanosheets are a promising layered material for formate-producing via electrocatalytic CO2 conversion. However, the commercial interest of bismuth nanosheets in CO2 electroreduction is still rare due to the undesirable current density for formate at moderate operation potentials (about 200 mA mg-1 ) and harsh synthesis conditions (high temperature and/or high pressure). This work reports the preparation of Bi nanosheets with a lateral size in micrometer-scale via electrochemical cathodic exfoliation in aqueous solution at normal pressure and temperature. As-prepared Bi LNSs (L indicates large lateral size) possess high Faradaic efficiencies over 90% within a broad potential window from -0.44 to -1.10 V versus RHE and a superior partial current density about 590 mA mg-1 for formate in comparison with state-of-the-art results. Structure analysis, electrochemical results, and density functional theory calculations demonstrate that the increasing tensile lattice strain observed in Bi LNSs leads to less overlap of d orbitals and a narrower d-band width, which tuning the intermediate binding energies, and therefore promotes the intrinsic activity.

12.
Science ; 372(6546): 1074-1078, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34083485

RESUMEN

Carbon dioxide electroreduction (CO2R) is being actively studied as a promising route to convert carbon emissions to valuable chemicals and fuels. However, the fraction of input CO2 that is productively reduced has typically been very low, <2% for multicarbon products; the balance reacts with hydroxide to form carbonate in both alkaline and neutral reactors. Acidic electrolytes would overcome this limitation, but hydrogen evolution has hitherto dominated under those conditions. We report that concentrating potassium cations in the vicinity of electrochemically active sites accelerates CO2 activation to enable efficient CO2R in acid. We achieve CO2R on copper at pH <1 with a single-pass CO2 utilization of 77%, including a conversion efficiency of 50% toward multicarbon products (ethylene, ethanol, and 1-propanol) at a current density of 1.2 amperes per square centimeter and a full-cell voltage of 4.2 volts.

13.
Nat Commun ; 12(1): 2932, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006871

RESUMEN

The electrochemical conversion of CO2 to methane provides a means to store intermittent renewable electricity in the form of a carbon-neutral hydrocarbon fuel that benefits from an established global distribution network. The stability and selectivity of reported approaches reside below technoeconomic-related requirements. Membrane electrode assembly-based reactors offer a known path to stability; however, highly alkaline conditions on the cathode favour C-C coupling and multi-carbon products. In computational studies herein, we find that copper in a low coordination number favours methane even under highly alkaline conditions. Experimentally, we develop a carbon nanoparticle moderator strategy that confines a copper-complex catalyst when employed in a membrane electrode assembly. In-situ XAS measurements confirm that increased carbon nanoparticle loadings can reduce the metallic copper coordination number. At a copper coordination number of 4.2 we demonstrate a CO2-to-methane selectivity of 62%, a methane partial current density of 136 mA cm-2, and > 110 hours of stable operation.

14.
Nat Commun ; 12(1): 2808, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990568

RESUMEN

Membrane electrode assembly (MEA) electrolyzers offer a means to scale up CO2-to-ethylene electroconversion using renewable electricity and close the anthropogenic carbon cycle. To date, excessive CO2 coverage at the catalyst surface with limited active sites in MEA systems interferes with the carbon-carbon coupling reaction, diminishing ethylene production. With the aid of density functional theory calculations and spectroscopic analysis, here we report an oxide modulation strategy in which we introduce silica on Cu to create active Cu-SiOx interface sites, decreasing the formation energies of OCOH* and OCCOH*-key intermediates along the pathway to ethylene formation. We then synthesize the Cu-SiOx catalysts using one-pot coprecipitation and integrate the catalyst in a MEA electrolyzer. By tuning the CO2 concentration, the Cu-SiOx catalyst based MEA electrolyzer shows high ethylene Faradaic efficiencies of up to 65% at high ethylene current densities of up to 215 mA cm-2; and features sustained operation over 50 h.

15.
J Am Chem Soc ; 142(51): 21513-21521, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33319985

RESUMEN

In the electrochemical CO2 reduction reaction (CO2RR), control over the binding of intermediates is key for tuning product selectivity and catalytic activity. Here we report the use of reticular chemistry to control the binding of CO2RR intermediates on metal catalysts encapsulated inside metal-organic frameworks (MOFs), thereby allowing us to improve CO2RR electrocatalysis. By varying systematically both the organic linker and the metal node in a face-centered cubic (fcu) MOF, we tune the adsorption of CO2, pore openness, and Lewis acidity of the MOFs. Using operando X-ray absorption spectroscopy (XAS) and in situ Raman spectroscopy, we reveal that the MOFs are stable under operating conditions and that this tuning plays the role of optimizing the *CO binding mode on the surface of Ag nanoparticles incorporated inside the MOFs with the increase of local CO2 concentration. As a result, we improve the CO selectivity from 74% for Ag/Zr-fcu-MOF-1,4-benzenedicarboxylic acid (BDC) to 94% for Ag/Zr-fcu-MOF-1,4-naphthalenedicarboxylic acid (NDC). The work offers a further avenue to utilize MOFs in the pursuit of materials design for CO2RR.

16.
Nat Commun ; 11(1): 6190, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273478

RESUMEN

Electroreduction uses renewable energy to upgrade carbon dioxide to value-added chemicals and fuels. Renewable methane synthesized using such a route stands to be readily deployed using existing infrastructure for the distribution and utilization of natural gas. Here we design a suite of ligand-stabilized metal oxide clusters and find that these modulate carbon dioxide reduction pathways on a copper catalyst, enabling thereby a record activity for methane electroproduction. Density functional theory calculations show adsorbed hydrogen donation from clusters to copper active sites for the *CO hydrogenation pathway towards *CHO. We promote this effect via control over cluster size and composition and demonstrate the effect on metal oxides including cobalt(II), molybdenum(VI), tungsten(VI), nickel(II) and palladium(II) oxides. We report a carbon dioxide-to-methane faradaic efficiency of 60% at a partial current density to methane of 135 milliampere per square centimetre. We showcase operation over 18 h that retains a faradaic efficiency exceeding 55%.

17.
Nat Commun ; 11(1): 3685, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703956

RESUMEN

Multi-carbon alcohols such as ethanol are valued as fuels in view of their high energy density and ready transport. Unfortunately, the selectivity toward alcohols in CO2/CO electroreduction is diminished by ethylene production, especially when operating at high current densities (>100 mA cm-2). Here we report a metal doping approach to tune the adsorption of hydrogen at the copper surface and thereby promote alcohol production. Using density functional theory calculations, we screen a suite of transition metal dopants and find that incorporating Pd in Cu moderates hydrogen adsorption and assists the hydrogenation of C2 intermediates, providing a means to favour alcohol production and suppress ethylene. We synthesize a Pd-doped Cu catalyst that achieves a Faradaic efficiency of 40% toward alcohols and a partial current density of 277 mA cm-2 from CO electroreduction. The activity exceeds that of prior reports by a factor of 2.

18.
Science ; 368(6496): 1228-1233, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32527828

RESUMEN

Chemicals manufacturing consumes large amounts of energy and is responsible for a substantial portion of global carbon emissions. Electrochemical systems that produce the desired compounds by using renewable electricity offer a route to lower carbon emissions in the chemicals sector. Ethylene oxide is among the world's most abundantly produced commodity chemicals because of its importance in the plastics industry, notably for manufacturing polyesters and polyethylene terephthalates. We applied an extended heterogeneous:homogeneous interface, using chloride as a redox mediator at the anode, to facilitate the selective partial oxidation of ethylene to ethylene oxide. We achieved current densities of 1 ampere per square centimeter, Faradaic efficiencies of ~70%, and product specificities of ~97%. When run at 300 milliamperes per square centimeter for 100 hours, the system maintained a 71(±1)% Faradaic efficiency throughout.

19.
J Am Chem Soc ; 142(12): 5702-5708, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32118414

RESUMEN

Electrochemical conversion of nitrate (NO3-) into ammonia (NH3) recycles nitrogen and offers a route to the production of NH3, which is more valuable than dinitrogen gas. However, today's development of NO3- electroreduction remains hindered by the lack of a mechanistic picture of how catalyst structure may be tuned to enhance catalytic activity. Here we demonstrate enhanced NO3- reduction reaction (NO3-RR) performance on Cu50Ni50 alloy catalysts, including a 0.12 V upshift in the half-wave potential and a 6-fold increase in activity compared to those obtained with pure Cu at 0 V vs reversible hydrogen electrode (RHE). Ni alloying enables tuning of the Cu d-band center and modulates the adsorption energies of intermediates such as *NO3-, *NO2, and *NH2. Using density functional theory calculations, we identify a NO3-RR-to-NH3 pathway and offer an adsorption energy-activity relationship for the CuNi alloy system. This correlation between catalyst electronic structure and NO3-RR activity offers a design platform for further development of NO3-RR catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...