Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128014

RESUMEN

Afferent synapses between inner hair cells (IHCs) and the type I spiral ganglion neurons (SGNs) in the cochlea provide over 95% of sensory signals for auditory perception in the brain. However, these afferent synapses are particularly vulnerable to damage, for example from excitotoxicity, and exposure to noise in the environment which often leads to noise-induced cochlear synaptopathy (NICS). In this study, we simulated excitotoxic trauma by incubating kainic acid, a non-desensitizing agonist for AMPA type glutamate receptors on cultured cochleae. The possible protective effects of amitriptyline against NICS were examined. We found that, in IHCs, amitriptyline reversed the decrease of Ca2+ current and exocytosis caused by excitotoxic trauma. In SGNs, amitriptyline promoted the recovery of neurite loss caused by excitotoxic trauma. Furthermore, we found that the protective effects of amitriptyline are likely mediated by suppressing apoptosis factors that were upregulated during excitotoxic trauma. In conclusion, our results suggest that amitriptyline could protect afferent synapses in the cochlea from NICS, making it a potential drug candidate for hearing protection.

2.
Nat Biomed Eng ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134683

RESUMEN

A prevalent recessive mutation (c.2485C>T, p.Q829X) within the OTOF gene leads to profound prelingual hearing loss. Here we show that in Otof mice harbouring a mutation (c.2482C>T, p.Q828X) homozygous to human OTOF that faithfully mimics the hearing-loss phenotype, a base editor (consisting of the deaminase ABE7.10max and the Cas9 variant SpCas9-NG) packaged in adeno-associated viruses and injected into the inner ear of the mice via the round-window membrane effectively corrected the pathogenic mutation, with no apparent off-target effects. The treatment restored the levels of the otoferlin protein in 88% of the inner hair cells and stably rescued the auditory function of the mice to near-wild-type levels for over 1.5 years while improving synaptic exocytosis in the inner hair cells. We also show that an adenine base editor that targets the prevalent human OTOF mutation restored hearing in humanized mice to levels comparable to those of the wild-type counterparts. Base editors may be effective for the treatment of hereditary deafness.

3.
Neuroreport ; 35(10): 638-647, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813908

RESUMEN

Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system. We prepared brain slices of the mouse brainstem and performed patch-clamp recording in bushy cells in the anteroventral cochlear nucleus, with or without Danshensu incubation for 1 h. QX-314 was used internally to block Na+ current, while tetraethylammonium and 4-aminopyridine were used to isolate different subtypes of K+ current. We found that Danshensu of 100 µm decreased the input resistance of bushy cells by approximately 60% and shifted the voltage threshold of spiking positively by approximately 7 mV, resulting in significantly reduced excitability. Furthermore, we found this reduced excitability by Danshensu was caused by enhanced voltage-gated K+ currents in these neurons, including both low voltage-activated IK,A, by approximately 100%, and high voltage-activated IK,dr, by approximately 30%. Lastly, we found that the effect of Danshensu on K+ currents was dose-dependent in that no enhancement was found for Danshensu of 50 µm and Danshensu of 200 µm failed to cause significantly more enhancement on K+ currents when compared to that of 100 µm. We found that Danshensu reduced neuronal excitability in the central nervous system by enhancing voltage-gated K+ currents, providing mechanistic support for its neuroprotective effect widely seen in vivo.


Asunto(s)
Núcleo Coclear , Lactatos , Neuronas , Animales , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología , Lactatos/farmacología , Núcleo Coclear/efectos de los fármacos , Núcleo Coclear/fisiología , Técnicas de Placa-Clamp , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Masculino , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Ratones Endogámicos C57BL
4.
Research (Wash D C) ; 7: 0341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665848

RESUMEN

Adeno-associated virus (AAV)-mediated gene therapy is widely applied to treat numerous hereditary diseases in animal models and humans. The specific expression of AAV-delivered transgenes driven by cell type-specific promoters should further increase the safety of gene therapy. However, current methods for screening cell type-specific promoters are labor-intensive and time-consuming. Herein, we designed a "multiple vectors in one AAV" strategy for promoter construction in vivo. Through this strategy, we truncated a native promoter for Myo15 expression in hair cells (HCs) in the inner ear, from 1,611 bp down to 1,157 bp, and further down to 956 bp. Under the control of these 2 promoters, green fluorescent protein packaged in AAV-PHP.eB was exclusively expressed in the HCs. The transcription initiation ability of the 2 promoters was further verified by intein-mediated otoferlin recombination in a dual-AAV therapeutic system. Driven by these 2 promoters, human otoferlin was selectively expressed in HCs, resulting in the restoration of hearing in treated Otof -/- mice for at least 52 weeks. In summary, we developed an efficient screening strategy for cell type-specific promoter engineering and created 2 truncated Myo15 promoters that not only restored hereditary deafness in animal models but also show great potential for treating human patients in future.

5.
Innovation (Camb) ; 5(3): 100600, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38510070

RESUMEN

Internal photoemission is a prominent branch of the photoelectric effect and has emerged as a viable method for detecting photons with energies below the semiconductor bandgap. This breakthrough has played a significant role in accelerating the development of infrared imaging in one chip with state-of-the-art silicon techniques. However, the performance of these Schottky infrared detectors is currently hindered by the limit of internal photoemission; specifically, a low Schottky barrier height is inevitable for the detection of low-energy infrared photons. Herein, a distinct paradigm of Schottky infrared detectors is proposed to overcome the internal photoemission limit by introducing an optically tunable barrier. This device uses an infrared absorbing material-sensitized Schottky diode, assisted by the highly adjustable Fermi level of graphene, which subtly decouples the photon energy from the Schottky barrier height. Correspondingly, a broadband photoresponse spanning from ultraviolet to mid-wave infrared is achieved, with a high specific detectivity of 9.83 × 1010 cm Hz1/2 W-1 at 2,700 nm and an excellent specific detectivity of 7.2 × 109 cm Hz1/2 W-1 at room temperature under blackbody radiation. These results address a key challenge in internal photoemission and hold great promise for the development of the Schottky infrared detector with high sensitivity and room temperature operation.

6.
Sci Adv ; 10(7): eadk8199, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363832

RESUMEN

Serving as the "eyes" and "ears" of the Internet of Things, optical and acoustic sensors are the fundamental components in hardware systems. Nowadays, mainstream hardware systems, often comprising numerous discrete sensors, conversion modules, and processing units, tend to result in complex architectures that are less efficient compared to human sensory pathways. Here, a visual-audio photodetector inspired by the human perception system is proposed to enable all-in-one visual and acoustic signal detection with computing capability. This device not only captures light but also optically records sound waves, thus achieving "watching" and "listening" within a single unit. The gate-tunable positive, negative, and zero photoresponses lead to highly programmable responsivities. This programmability enables the execution of diverse functions, including visual feature extraction, object classification, and sound wave manipulation. These results showcase the potential of expanding perception approaches in neuromorphic devices, opening up new possibilities to craft intelligent and compact hardware systems.

7.
Opt Express ; 32(2): 2867-2883, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297805

RESUMEN

The van der Waals (vdWs) heterostructures, with vertical layer stacking structure of various two-dimensional (2D) materials, maintain the reliable photonic characteristics while compensating the shortcomings of the participating individual components. In this work, we combine the less-studied multilayer tin selenide (SnSe2) thin film with one of the traditional 2D materials, graphene, to fabricate the graphene-based vdWs optical switching element (Gr-SnSe2) with superior broadband nonlinear optical response. The transient absorption spectroscopy (TAS) measurement results verify that graphene acts as the recombination channel for the photogenerated carrier in the Gr-SnSe2 sample, and the fast recovery time can be reduced to hundreds of femtoseconds which is beneficial for the optical modulation process. The optical switching properties are characterized by the I-scan measurements, exhibiting a saturable energy intensity of 2.82 mJ·cm-2 (0.425 µJ·cm-2) and a modulation depth of 15.6% (22.5%) at the wavelength of 1030 nm (1980nm). Through integrating Gr-SnSe2 with a cladding waveguide, high-performance picosecond Q-switched operation in the near-infrared (NIR) and mid-infrared (MIR) spectral regions are both achieved. This work experimentally demonstrates the great potential of graphene-based vdWs heterostructures for applications in broadband ultrafast photonics.

8.
Mol Ther Nucleic Acids ; 35(1): 102135, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38404504

RESUMEN

Adeno-associated viral (AAV) vectors are increasingly used as vehicles for gene delivery to treat hearing loss. However, lack of specificity of the transgene expression may lead to overexpression of the transgene in nontarget tissues. In this study, we evaluated the expression efficiency and specificity of transgene delivered by AAV-PHP.eB under the inner ear sensory cell-specific Myo15 promoter. Compared with the ubiquitous CAG promoter, the Myo15 promoter initiates efficient expression of the GFP fluorescence reporter in hair cells, while minimizing non-specific expression in other cell types of the inner ear and CNS. Furthermore, using the Myo15 promoter, we constructed an AAV-mediated therapeutic system with the coding sequence of OTOF gene. After inner ear injection, we observed apparent hearing recovery in Otof-/- mice, highly efficient expression of exogenous otoferlin, and significant improvement in the exocytosis function of inner hair cells. Overall, our results indicate that gene therapy mediated by the hair cell-specific Myo15 promoter has potential clinical application for the treatment of autosomal recessive deafness and yet for other hereditary hearing loss related to dysfunction of hair cells.

9.
Adv Colloid Interface Sci ; 318: 102956, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393823

RESUMEN

In view of the relevance of organic thin layers in many fields, the fundamentals, growth mechanisms, and dynamics of thin organic layers, in particular thiol-based self-assembled monolayers (SAMs) on Au(111) are systematically elaborated. From both theoretical and practical perspectives, dynamical and structural features of the SAMs are of great intrigue. Scanning tunneling microscopy (STM) is a remarkably powerful technique employed in the characterization of SAMs. Numerous research examples of investigation about the structural and dynamical properties of SAMs using STM, sometimes combined with other techniques, are listed in the review. Advanced options to enhance the time resolution of STM are discussed. Additionally, we elaborate on the extremely diverse dynamics of various SAMs, such as phase transitions and structural changes at the molecular level. In brief, the current review is expected to supply a better understanding and novel insights regarding the dynamical events happening in organic SAMs and how to characterize these processes.

10.
Neurobiol Dis ; 183: 106176, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37263384

RESUMEN

Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells. Using transgenic knockout mice, we found that P2X7 receptor deficiency protects HCs against neomycin-induced injury in vitro and in vivo. Subsequently, we used fluorescent gentamicin-Fluor 594 to study the uptake of AGAs and found fluorescence labeling in wild-type mice but not in P2rx7-/- mice in vitro. In addition, knocking-out P2rx7 did not significantly alter the HC count and auditory signal transduction, but it did inhibit mitochondria-dependent oxidative stress and apoptosis in the cochlea after neomycin exposure. We thus conclude that the P2X7 receptor may be linked to the entry of AGAs into HCs and is likely to be a therapeutic target for auditory HC protection.


Asunto(s)
Aminoglicósidos , Ototoxicidad , Animales , Ratones , Aminoglicósidos/toxicidad , Aminoglicósidos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ototoxicidad/metabolismo , Antibacterianos/toxicidad , Neomicina/toxicidad , Neomicina/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Adenosina Trifosfato/metabolismo
11.
Nat Commun ; 14(1): 3012, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230976

RESUMEN

Pendrin (SLC26A4) is an anion exchanger expressed in the apical membranes of selected epithelia. Pendrin ablation causes Pendred syndrome, a genetic disorder associated with sensorineural hearing loss, hypothyroid goiter, and reduced blood pressure. However its molecular structure has remained unknown, limiting our understanding of the structural basis of transport. Here, we determine the cryo-electron microscopy structures of mouse pendrin with symmetric and asymmetric homodimer conformations. The asymmetric homodimer consists of one inward-facing protomer and the other outward-facing protomer, representing coincident uptake and secretion- a unique state of pendrin as an electroneutral exchanger. The multiple conformations presented here provide an inverted alternate-access mechanism for anion exchange. The structural and functional data presented here disclose the properties of an anion exchange cleft and help understand the importance of disease-associated variants, which will shed light on the pendrin exchange mechanism.


Asunto(s)
Bocio Nodular , Proteínas de Transporte de Membrana , Animales , Ratones , Microscopía por Crioelectrón , Subunidades de Proteína , Proteínas de Transporte de Membrana/genética , Bocio Nodular/genética , Transportadores de Sulfato/genética , Aniones
12.
Cell Death Discov ; 9(1): 177, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258513

RESUMEN

Hearing loss is one of the most common neurosensory disorders in humans, and above half of hearing loss is caused by gene mutations. Among more than 100 genes that cause non-syndromic hearing loss, myosin VI (MYO6) is typical in terms of the complexity of underlying mechanisms, which are not well understood. In this study, we used both knock-out (Myo6-/-) and point mutation (Myo6C442Y) mice as animal models, performed whole-cell patch-clamp recording and capacitance measurement in the inner hair cells (IHCs) in the cochlea, and sought to reveal potential functional and developmental changes in their ribbon synapses. In Myo6-/- cochleae of both before (P8-10) and after hearing onset (P18-20), exocytosis from IHCs, measured in whole-cell capacitance change (ΔCm), was significantly reduced, Ca2+ current amplitude (ICa) was unchanged, but Ca2+ voltage dependency was differently altered, causing significant increase in Ca2+ influx in mature IHCs but not in immature IHCs. In immature IHCs of Myo6C442Y/C442Y cochleae, neither ΔCm nor ICa was altered, but both were reduced in mature IHCs of the same animal model. Furthermore, while the reduction of exocytosis was caused by a combination of the slower rate of depleting readily releasable (RRP) pool of synaptic vesicles and slower sustained release rate (SRR) in Myo6-/- immature IHCs, it was likely due to smaller RRP and slower SRR in mature IHCs of both animal models. These results expand our understanding of the mechanisms of deafness caused by MYO6 mutations, and provide a solid theoretical and scientific basis for the diagnosis and treatment of deafness.

13.
Nanomaterials (Basel) ; 13(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36678075

RESUMEN

Position-sensitive detectors (PSDs) are of great significance to optical communication, automatic alignment, and dislocation detection domains, by precisely obtaining the position information of infrared light spots which are invisible to human eyes. Herein, a kind of PSD based on graphene/germanium (Ge) heterojunction architecture is proposed and demonstrated, which exhibits amplified signals by unitizing the charge injection effect. Driven by the graphene/Ge heterojunction, a large number of photogenerated carriers diffuse from the incident position of the light spot and subsequently inject into graphene, which ultimately generates a photoresponse with high efficiency. The experimental results show that the device can exhibit a fast response speed of 3 µs, a high responsivity of ~40 A/W, and a detection distance of 3000 µm at the 1550 nm band, which hints that the graphene/Ge heterojunction can be used as an efficient platform for near-infrared light spot position sensing.

14.
Stem Cell Reports ; 18(1): 319-336, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36584686

RESUMEN

Functional cochlear hair cells (HCs) innervated by spiral ganglion neurons (SGNs) are essential for hearing, whereas robust models that recapitulate the peripheral auditory circuity are still lacking. Here, we developed cochlear organoids with functional peripheral auditory circuity in a staging three-dimensional (3D) co-culture system by initially reprogramming cochlear progenitor cells (CPCs) with increased proliferative potency that could be long-term expanded, then stepwise inducing the differentiation of cochlear HCs, as well as the outgrowth of neurites from SGNs. The function of HCs and synapses within organoids was confirmed by a series of morphological and electrophysiological evaluations. Single-cell mRNA sequencing revealed the differentiation trajectories of CPCs toward the major cochlear cell types and the dynamic gene expression during organoid HC development, which resembled the pattern of native HCs. We established the cochlear organoids with functional synapses for the first time, which provides a platform for deciphering the mechanisms of sensorineural hearing loss.


Asunto(s)
Cóclea , Ganglio Espiral de la Cóclea , Neuronas/metabolismo , Neuritas/metabolismo , Organoides
15.
Cereb Cortex ; 33(7): 3401-3420, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35849820

RESUMEN

Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.


Asunto(s)
Corteza Auditiva , Pinzones , Humanos , Masculino , Animales , Femenino , Estrógenos/farmacología , Pinzones/metabolismo , Vocalización Animal/fisiología , Estradiol , Corteza Auditiva/fisiología , Neuronas/fisiología , Mamíferos/metabolismo
16.
Front Neurosci ; 16: 945277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911996

RESUMEN

Objectives: This study aims to investigate the effects of multiple sevoflurane exposures in neonatal mice on hearing function in the later life and explores the underlying mechanisms and protective strategies. Materials and Methods: Neonatal Kunming mice were exposed to sevoflurane for 3 days. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests, immunofluorescence, patch-clamp recording, and quantitative real-time PCR were performed to observe hearing function, hair cells, ribbon synapses, nerve fibers, spiral ganglion neurons, and oxidative stress. Results: Compared to control group, multiple sevoflurane exposures during the neonatal time significantly elevated ABR thresholds at 8 kHz (35.42 ± 1.57 vs. 41.76 ± 1.97 dB, P = 0.0256), 16 kHz (23.33 ± 1.28 vs. 33.53 ± 2.523 dB, P = 0.0012), 24 kHz (30.00 ± 2.04 vs. 46.76 ± 3.93 dB, P = 0.0024), and 32 kHz (41.25 ± 2.31 vs. 54.41 ± 2.94 dB, P = 0.0028) on P30, caused ribbon synapse loss on P15 (13.10 ± 0.43 vs. 10.78 ± 0.52, P = 0.0039) and P30 (11.24 ± 0.56 vs. 8.50 ± 0.84, P = 0.0141), and degenerated spiral ganglion neuron (SGN) nerve fibers on P30 (110.40 ± 16.23 vs. 55.04 ± 8.13, P = 0.0073). In addition, the V half of calcium current become more negative (-21.99 ± 0.70 vs. -27.17 ± 0.60 mV, P < 0.0001), exocytosis was reduced (105.40 ± 19.97 vs. 59.79 ± 10.60 fF, P < 0.0001), and Lpo was upregulated (P = 0.0219) in sevoflurane group than those in control group. N-acetylcysteine (NAC) reversed hearing impairment induced by sevoflurane. Conclusion: The findings suggest that multiple sevoflurane exposures during neonatal time may cause hearing impairment in adult mice. The study also demonstrated that elevated oxidative stress led to ribbon synapses impairment and SGN nerve fibers degeneration, and the interventions of antioxidants alleviated the sevoflurane-induced hearing impairment.

17.
Mol Ther Nucleic Acids ; 29: 400-412, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035752

RESUMEN

Gene therapy would benefit from the effective editing of targeted cells with CRISPR-Cas9 tools. However, it is difficult to precisely assess the editing performance in vivo because the tissues contain many non-targeted cells, which is one of the major barriers to clinical translation. Here, in the Atoh1-GFP;Kcnq4 +/G229D mice, recapitulating a novel mutation we identified in a hereditary hearing loss pedigree, the high-efficiency editing of CRISPR-Cas9 in hair cells (34.10% on average) was precisely detected by sorting out labeled cells compared with only 1.45% efficiency in the whole cochlear tissue. After injection of the developed AAV_SaCas9-KKH_sgRNA agents, the Kcnq4 +/G229D mice showed significantly lower auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) thresholds, shorter ABR wave I latencies, higher ABR wave I amplitudes, increased number of surviving outer hair cells (OHCs), and more hyperpolarized resting membrane potentials of OHCs. These findings provide an innovative approach to accurately assess the underestimated editing efficiency of CRISPR-Cas9 in vivo and offer a promising strategy for the treatment of KCNQ4-related deafness.

18.
J Nanobiotechnology ; 20(1): 398, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045382

RESUMEN

BACKGROUND: The ideal neural interface or scaffold for stem cell therapy shall have good biocompatibility promoting survival, maturation and integration of neural stem cells (NSCs) in targeted brain regions. The unique electrical, hydrophilic and surface-modifiable properties of Ti3C2Tx MXene make it an attractive substrate, but little is known about how it interacts with NSCs during development and maturation. RESULTS: In this study, we cultured NSCs on Ti3C2Tx MXene and examined its effects on morphological and electrophysiological properties of NSC-derived neurons. With a combination of immunostaining and patch-clamp recording, we found that Ti3C2Tx MXene promotes NSCs differentiation and neurite growth, increases voltage-gated current of Ca2+ but not Na+ or K+ in matured neurons, boosts their spiking without changing their passive membrane properties, and enhances synaptic transmission between them. CONCLUSIONS: These results expand our understanding of interaction between Ti3C2Tx MXene and NSCs and provide a critical line of evidence for using Ti3C2Tx MXene in neural interface or scaffold in stem cell therapy.


Asunto(s)
Células-Madre Neurales , Titanio , Diferenciación Celular , Neuronas , Titanio/metabolismo , Titanio/farmacología
19.
Sci Transl Med ; 14(654): eabn0449, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35857824

RESUMEN

Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the potential of these RNA tools to treat disease remains unknown. Here, we evaluated RNA correction therapy with Cas13-based RNA base editors in the myosin VI p.C442Y heterozygous mutation (Myo6C442Y/+) mouse model that recapitulated the phenotypes of human dominant-inherited deafness. We first screened several variants of Cas13-based RNA base editors and guide RNAs (gRNAs) targeting Myo6C442Y in cultured cells and found that mini dCas13X.1-based adenosine base editor (mxABE), composed of truncated Cas13X.1 and the RNA editing enzyme adenosine deaminase acting on RNA 2 deaminase domain variant (ADAR2ddE488Q), exhibited both high efficiency of A > G conversion and low frequency of off-target edits. Single adeno-associated virus (AAV)-mediated delivery of mxABE in the cochlea corrected the mutated Myo6C442Y to Myo6WT allele in homozygous Myo6C442Y/C442Y mice and resulted in increased Myo6WT allele in the injected cochlea of Myo6C442Y/+ mice. The treatment rescued auditory function, including auditory brainstem response and distortion product otoacoustic emission up to 3 months after AAV-mxABE-Myo6 injection in Myo6C442Y/+ mice. We also observed increased survival rate of hair cells and decreased degeneration of hair bundle morphology in the treated compared to untreated control ears. These findings provide a proof-of-concept study for RNA editing tools as a therapeutic treatment for various semidominant forms of hearing loss and other diseases.


Asunto(s)
Sordera , Pérdida Auditiva , Animales , Ratones , Genes Dominantes , Células Ciliadas Auditivas , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , ARN
20.
Clin Genet ; 102(2): 149-154, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35599357

RESUMEN

The pathogenic variants in KCNQ4 cause DFNA2 nonsyndromic hearing loss. However, the understanding of genotype-phenotype correlations between KCNQ4 and hearing is limited. Here, we identified a novel KCNQ4 mutation p.G228D from a Chinese family, including heterozygotes characterized by high-frequency hearing loss that is progressive across all frequencies and homozygotes with more severe hearing loss. We constructed a novel murine model with humanized homologous Kcnq4 mutation. The heterozygotes had mid-frequency and high-frequency hearing loss at 4 weeks, and moved toward all frequencies hearing loss at 12 weeks, while the homozygotes had severe-to-profound hearing loss at 8 weeks. The degeneration of outer hair cells (OHCs) was observed from basal to apical turn of cochlea. The reduced K+ currents and depolarized resting potentials were revealed in OHCs. Remarkably, we observed the loss of inner hair cells (IHCs) in the region corresponding to the frequency above 32 kHz at 8-12 weeks. The results suggest the degeneration of OHCs and IHCs may contribute to high-frequency hearing loss in DFNA2 over time. Our findings broaden the variants of KCNQ4 and provide a novel mouse model of progressive hearing loss, which contributes to an understanding of pathogenic mechanism and eventually treatment of DFNA2 progressive hearing loss.


Asunto(s)
Pérdida Auditiva de Alta Frecuencia , Canales de Potasio KCNQ , Animales , China , Modelos Animales de Enfermedad , Pérdida Auditiva de Alta Frecuencia/genética , Humanos , Canales de Potasio KCNQ/genética , Ratones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA