Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 14(2): 601-615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455405

RESUMEN

Breast cancer stem cells (BCSCs) are responsible for breast cancer metastasis, recurrence and treatment resistance, all of which make BCSCs potential drivers of breast cancer aggression. Ginsenoside Rg3, a traditional Chinese herbal medicine, was reported to have multiple antitumor functions. Here, we revealed a novel effect of Rg3 on BCSCs. Rg3 inhibits breast cancer cell viability in a dose- and time-dependent manner. Importantly, Rg3 suppressed mammosphere formation, reduced the expression of stemness-related transcription factors, including c-Myc, Oct4, Sox2 and Lin28, and diminished ALDH(+) populations. Moreover, tumor-bearing mice treated with Rg3 exhibited robust delay of tumor growth and a decrease in tumor-initiating frequency. In addition, we found that Rg3 suppressed breast cancer stem-like properties mainly through inhibiting MYC expression. Mechanistically, Rg3 accelerated the degradation of MYC mRNA by enhancing the expression of the let-7 family, which was demonstrated to bind to the MYC 3' untranslated region (UTR). In conclusion, our findings reveal the remarkable suppressive effect of Rg3 on BCSCs, suggesting that Rg3 is a promising therapeutic treatment for breast cancer.

2.
Oncol Lett ; 27(4): 182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476209

RESUMEN

Ginsenoside Rg3 (GS-Rg3), a sterol molecule isolated from ginseng, has demonstrated various immunological properties, including inhibition of cancer cell proliferation and metastasis, reversal of drug resistance and enhancement of chemotherapy sensitivity. The recent surge in attention towards GS-Rg3 can be attributed to its potential as an antitumor angiogenesis agent and as a therapeutic candidate for immunotherapy. The development of GS-Rg3 as an agent for these purposes has accelerated research on its mechanisms of action. The present review summarizes recent studies investigating the antitumor activity of GS-Rg3 and its underlying mechanisms, as well as providing essential information for future studies on GS-Rg3.

3.
Cell Signal ; 107: 110662, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001595

RESUMEN

PEG3 is a paternally imprinted gene located on chromosome 19q13.4 and one of the most common low-expression genes in human ovarian cancer. PEG3 plays an important role in p53-related cell death. However, whether PEG3 plays a role in renal clear cell carcinoma (ccRCC) remains unclear. Here, we found that PEG3 was epigenetic inactivated and played a tumor suppressor role in ccRCC. Overexpression of PEG3 inhibited ccRCC cell proliferation and colony formation, while removal of PEG3 significantly promoted cell proliferation in vitro and tumor formation in nude mice in vivo. EZH2-mediated H3K27me3 at the PEG3 promoter suppressed PEG3 expression. EZH2 specific inhibitors promote PEG3 transcriptional expression through the transition from H3K27me3 to H3K27ac at the PEG3 promoter region. Depletion of PEG3 inhibited the activation of the p53 signaling pathway, resulting in the resistance of ccRCC to EZH2 inhibitors treatment. Thus, our data show that EZH2-mediated epigenetic inactivation of PEG3 promotes the progress of ccRCC, and reactivation of PEG3 may be a promising strategy for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Ratones , Femenino , Animales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Histonas/genética , Ratones Desnudos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo
4.
Anticancer Drugs ; 34(7): 803-815, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729405

RESUMEN

The triple-negative breast cancer (TNBC) subtype is the most aggressive type of breast cancer with a low survival prognosis and high recurrence rate. There is currently no effective treatment to improve it. In this work, we explored the effect of a synthetic compound named WXJ-103 on several aspects of TNBC biology. The human breast cancer cell lines MDA-MB-231 and MCF-7 were used in the experiments, and the cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, and the cell migration and invasion abilities were detected by wound healing assay and Transwell invasion assay. Cell cycle and apoptosis experiments were analyzed by flow cytometry, and protein levels related to cyclin-dependent kinase (CDK) 4/6-cyclin D-Rb-E2F pathway were analyzed by western blotting. Then, in-vivo experiments were performed to determine the clinical significance and functional role of WXJ-103. The results show that WXJ-103 can inhibit the adhesion, proliferation, migration, and invasion of TNBC cells, and can arrest the cell cycle in G1 phase. The levels of CDK4/6-cyclin D-Rb-E2F pathway-related proteins such as CDK6 and pRb decreased in a dose-dependent manner. Therefore, the antitumor activity of WXJ-103 may depend on the inhibition of CDK4/6-cyclin D1-Rb-E2F pathway. This research shows that WXJ-103 may be a new promising antitumor drug, which can play an antitumor effect on TNBC and provide new ideas for the treatment of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Proliferación Celular , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/uso terapéutico , Purinas/farmacología , Línea Celular Tumoral
5.
Biochem Biophys Res Commun ; 593: 101-107, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35063764

RESUMEN

Ubiquitin-specific protease 18 (USP18) is a deubiquitinating enzyme that reverses the post-translational modification of target proteins by ISG15 or ubiquitin, and is involved in a variety of cellular processes, including signal transduction, viral infection, and cancer development. Although high levels of USP18 mRNA have been observed in several types of cancer, its pathological significance in ovarian cancer (OV) is still elusive. Here, by integrating the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Genotypic Tissue Expression (GTEx) databases, we found that USP18 was abnormally up-regulated in OV tissues, and the increased expression of USP18 was associated with poor prognosis. We further showed that activated Jak-STAT3 signaling induced the expression of USP18, which in turn feedback maintained the activity of Jak-STAT3 signaling in OV. In addition, we found that USP18 played a cancer-promoting role in OV mainly through the transcriptional regulation of FBXO6. Silencing USP18 reduced the malignancy of OV, which can be largely reversed by overexpression of FBXO6. On the contrary, silencing FBXO6 significantly weaken the pro-proliferation function of USP18 in OV cells. In summary, our results indicate that USP18 is a downstream target gene of STAT3, and the USP18-FBXO6 axis might be a promising therapeutic target for OV.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/patología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Pronóstico , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ubiquitina Tiolesterasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...