Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202301616, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318952

RESUMEN

Understanding illumination-mediated kinetics is essential for catalyst design in plasmon catalysis. Here we prepare Pd-based plasmonic catalysts with tunable electronic structures to reveal the underlying illumination-enhanced kinetic mechanisms for formic acid (HCOOH) dehydrogenation. We demonstrate a kinetic switch from a competitive Langmuir-Hinshelwood adsorption mode in dark to a non-competitive type under irradiation triggered by local field and hot carriers. Specifically, the electromagnetic field induces a spatial-temporal separation of dehydrogenation-favorable configurations of reactant molecule HCOOH and HCOO- due to their natural different polarities. Meanwhile, the generated energetic carriers can serve as active sites for selective molecular adsorption. The hot electrons act as adsorption sites for HCOOH, while holes prefer to adsorb HCOO- . Such unique non-competitive adsorption kinetics induced by plasmon effects serves as another typical characteristic of plasmonic catalysis that remarkably differs from thermocatalysis. This work unravels unique adsorption transformations and a kinetic switching driven by plasmon nonthermal effects.

2.
Nat Commun ; 15(1): 1573, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383547

RESUMEN

Intermetallic compounds (IMCs) with fixed chemical composition and ordered crystallographic arrangement are highly desirable platforms for elucidating the precise correlation between structures and performances in catalysis. However, diffusing a metal atom into a lattice of another metal to form a controllably regular metal occupancy remains a huge challenge. Herein, we develop a general and tractable solvothermal method to synthesize the Bi-Pd IMCs family, including Bi2Pd, BiPd, Bi3Pd5, Bi2Pd5, Bi3Pd8 and BiPd3. By employing electrocatalytic CO2 reduction as a model reaction, we deeply elucidated the interplay between Bi-Pd IMCs and key intermediates. Specific surface atomic arrangements endow Bi-Pd IMCs different relative surface binding affinities and adsorption configuration for *OCHO, *COOH and *H intermediate, thus exhibiting substantially selective generation of formate (Bi2Pd), CO (BiPd3) and H2 (Bi2Pd5). This work provides a comprehensive understanding of the specific structure-performance correlation of IMCs, which serves as a valuable paradigm for precisely modulating catalyst material structures.

3.
Nanoscale Adv ; 5(24): 6819-6829, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059022

RESUMEN

Coupling visible light with Pd-based hybrid plasmonic nanostructures has effectively enhanced formic acid (FA) dehydrogenation at room temperature. Unlike conventional heating to achieve higher product yield, the plasmonic effect supplies a unique surface environment through the local electromagnetic field and hot charge carriers, avoiding unfavorable energy consumption and attenuated selectivity. In this minireview, we summarized the latest advances in plasmon-enhanced FA dehydrogenation, including geometry/size-dependent dehydrogenation activities, and further catalytic enhancement by coupling local surface plasmon resonance (LSPR) with Fermi level engineering or alloying effect. Furthermore, some representative cases were taken to interpret the mechanisms of hot charge carriers and the local electromagnetic field on molecular adsorption/activation. Finally, a summary of current limitations and future directions was outlined from the perspectives of mechanism and materials design for the field of plasmon-enhanced FA decomposition.

4.
Inorg Chem ; 62(43): 17668-17677, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37847070

RESUMEN

Using ligand-protected metallic nanoclusters with atomic precision as catalysts and elucidating its ligand effect in the catalysis are the prerequisites to deepen the structure-catalysis relationship of nanoclusters at the molecular level. Herein, a series of Ag33 nanoclusters protected with different thiolate ligands (2-phenylethanethiol, 4-chlorobenzyl mercaptan, and 4-methoxybenzyl mercaptan as precursors) were synthesized and used as heterogeneous catalysts for the conversion of nitroarenes to arylamine with NaBH4 as reductant. The obtained nanoclusters exhibited ligand-dependent catalytic activity, with benzyl thiolate ligands distinctly superior to the phenethyl thiolate ligands. DFT calculations revealed that the ligand regulated catalytic activity of the nanoclusters was ascribed to the H-π and π-π interactions between the ligands and the substrates, owing to the presence of phenyl rings in these structures. This work highlighted the importance of the ligands on the metallic nanoclusters in catalysis and provides a strategy to regulate the catalytic activity by utilizing weak interactions between the catalysts and the substrates.

5.
Heliyon ; 9(5): e15669, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37180933

RESUMEN

Ionic surfactants are easily adsorbed by silt and clay particles, thus affecting the flocculation characteristics and settling behavior. The settling velocity, typical size, Zeta potential and surface tension of silt flocs were measured in the presence of two different kinds of ionic surfactants. The results indicated that the cetyltrimethylammonium bromide (CTAB, a typical cationic surfactant) can dramatically accelerate the settling of slit particles, while the linear alkylbenzene sulfonate (LAS, a typical anionic surfactant) slightly retarded silt sedimentation to some extent. In still water, the representative settling velocity dramatically increased from 0.36 cm s-1 to 0.43 cm s-1 with the increase of CTAB concentration, which increased by more than 20%. Oppositely, the sedimentation rate decreased from 0.36 cm s-1 to 0.33 cm s-1 with the increase of LAS concentration. In flowing water, as the flow rate increased from 0 to 20 cm s-1 and the ionic surfactant concentration increased from 0 to 10 mg L-1, the sedimentation rate decreased to 57% and 89% in the presence of CTAB and LAS respectively, which was due to an enhanced dispersion of silt particles and a breaking of flocs. The SEM image test shows that the floc particle size increased 1.5 times of the primary particle size under the high CTAB concentration. The flocculation induced by ionic surfactants greatly influences the sediment size as well as the law of settling velocity. The intrinsic influence mechanism was also discussed based on the variations of silt particle properties. This systematic study can be used for further development of flocculation models and particle size distribution of fine-grained soil.

6.
Bioelectrochemistry ; 150: 108367, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36621048

RESUMEN

Stainless steels (SS) are not immune to microbiologically influenced corrosion (MIC) especially in the presence of sulfate reducing bacteria (SRB). It is necessary to study the influence of alloying elements on the MIC. SRB MIC behaviors of four stainless steels (2205 SS, 316L SS, 304 SS, and 410 SS), with different alloying element compositions were compared after 14 days of incubation at 37°C in enriched artificial seawater inoculated with Desulfovibrio sp. The sessile cell sequence was 410 SS > 316L SS > 304 SS > 2205 SS, inversely proportional to Cr content. The uniform corrosion rate (based on weight loss) sequence was 410 SS > 304 SS > 316L SS > 2205 SS, which matches the pitting resistance equivalent number (PREN) sequence inversely. 410 SS with the lowest Cr and Mo contents suffered the most severe pitting, with pit depth of 35 µm and weight loss of 0.75 mg/cm2 (0.91 mm/a pitting rate and 25 µm/a uniform corrosion rate). The other three stainless steels with higher Cr and Mo contents suffered only metastable pits. The semiconductor characteristics and the re-passivation abilities of the passive films were found to be affected by Cr and Mo contents.


Asunto(s)
Desulfovibrio , Acero , Acero Inoxidable , Aleaciones , Corrosión , Anaerobiosis , Agua de Mar
7.
Chemistry ; 29(19): e202203644, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36594793

RESUMEN

Assembling bimetallic alloys (BAs) with metal-organic frameworks (MOFs) to form heterojunctions has emerged as a promising strategy for the construction of highly active electrocatalysts. However, the current approaches to prepare BA@MOF heterojunctions suffer from poor controllability. In this work, a fascinating method involving partial thermal reduction and galvanic replacement to induce CuPt growth on a CuHHTP MOF (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) is reported in order to construct a CuPt@CuHHTP heterojunction. The size of the CuPt nanoparticles can be effectively regulated by modifying the reduction temperature. The resultant CuPt NP@CuHHTP heterojunction nanoarrays exhibit high electrocatalytic activity and potential as an electrochemical H2 O2 sensor with a low detection limit (5 nM), high sensitivity (6.942 mA ⋅ mM-1 ⋅ cm-2 ), and outstanding selectivity. This in situ approach provides not only new insights into the preparation of BA@MOF-based heterojunctions but also an effective approach for the optimization of the catalytic performance of MOFs and related materials.

8.
ChemSusChem ; 16(7): e202201964, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36594829

RESUMEN

Biomass-derived carbon materials have received extensive attention for use in high-performance electrocatalysts. In this study, a highly efficient electrocatalyst is developed with Co nanoparticles anchored on N-doped porous carbon material (CoNC) by using yeast as a biomass precursor through a facial activation and pyrolysis process. CoNC exhibits comparable catalytic activity with commercial 20 % Pt/C for the oxygen reduction reaction (ORR) with a half-wave potential of 0.854 V. A home-made primary Zn-air battery exhibited an open circuit potential of 1.45 V and a peak power density of 188 mW cm-2 . Moreover, the discharge voltage of the primary battery maintained at a stable value up to 9 days. The enhanced performance of CoNC was probably ascribed to its high content of pyridinic-N and graphitic-N species, extra Co loading and porous structure, which provided sufficient active sites and channels to promote mass/electron transfer for ORR. This work provides a promising strategy to develop an efficient non-noble metal carbon-based electrocatalyst for fuel cells and metal-air batteries.

9.
ChemSusChem ; 16(6): e202202069, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36537011

RESUMEN

Developing an efficient catalyst for formic acid (FA) dehydrogenation is a promising strategy for safe hydrogen storage and transportation. Herein, we successfully developed trimetallic NiAuPd heterogeneous catalysts through a galvanic replacement reaction and a subsequent chemical reduction process to boost hydrogen generation from FA decomposition at room temperature by coupling Fermi level engineering with plasmonic effect. We demonstrated that Ni worked as an electron reservoir to donate electrons to Au and Pd driven by Fermi level equilibrium whereas plasmonic Au served as an optical absorber to generate energetic hot electrons and a charge-redistribution mediator. Ni and Au worked cooperatively to promote the charge heterogeneity of surface-active Pd sites, leading to enhanced chemisorption of formate-related intermediates and eventually outstanding activity (342 mmol g-1 h-1 ) compared with bimetallic counterpart. This work offers excellent insight into the rational design of efficient catalysts for practical hydrogen energy exploitation.

10.
Food Chem ; 395: 133642, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35820273

RESUMEN

In this work, we have successfully developed Cu-MOF/CuO/NiO nanocomposites (NCs) and employed as a novel electrochemical sensing platform in catechol (CC) detection. The Scanning electron microscopy (SEM) along Energy dispersive X-ray Analysis (EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) are carried out to characterize the as-fabricated Cu-MOF/CuO/NiO NCs. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have used to obtain oxidation peak currents of CC. Glassy carbon electrode (GCE) modified with Cu-MOF/CuO/NiO has exposed the superb EC properties representing low limit of detection (LOD) of 0.0078 µM (S/N = 3). To assess the practicability of Cu-MOF/CuO/NiO based sensing medium, it has been used to detect CC from two varieties of tea, namely black and green. Thus, we anticipate that this structural integration strategy possesses encouraging application potential in sensing podium and material synthesis.


Asunto(s)
Nanocompuestos , Catecoles , Técnicas Electroquímicas/métodos , Electrodos , Nanocompuestos/química , Óxidos ,
11.
J Colloid Interface Sci ; 622: 871-879, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35561607

RESUMEN

Transition metal oxide/metal-organic framework heterojunctions (TMO@MOF) that combine the large specific surface area of MOFs with TMOs' high catalytic activity and multifunctionality, show excellent performances in various catalytic reactions. Nevertheless, the present preparation approaches of TMO@MOF heterojunctions are too complex to control, stimulating interests in developing simple and highly controllable methods for preparing such heterojunction. In this study, we propose an in situ electrochemical reduction approach to fabricating Cu2O nanoparticle (NP)@CuHHTP heterojunction nanoarrays with a graphene-like conductive MOF CuHHTP (HHTP is 2,3,6,7,10,11-hexahydroxytriphenylene). We have discovered that size-controlled Cu2O nanoparticles could be in situ grown on CuHHTP by applying different electrochemical reduction potentials. Also, the obtained Cu2O NP@CuHHTP heterojunction nanoarrays show high H2O2 sensitivity of 8150.6 µA·mM-1·cm2 and satisfactory detection performances in application of measuring H2O2 concentrations in urine and serum samples. This study offers promising guidance for the synthesis of MOF-based heterojunctions for early cancer diagnosis.


Asunto(s)
Grafito , Estructuras Metalorgánicas , Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno , Óxidos
12.
Bioelectrochemistry ; 142: 107933, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34560601

RESUMEN

Crevice corrosion of X80 carbon steel in simulated seawater with the presence of SRB was studied by surface analysis and electrochemical measurements. The electrode inside crevice was seriously corroded. Large amount of corrosion products accumulated along the crevice mouth. Galvanic current densities measurements confirmed that there was a galvanic effect between the carbon steel at the crevice interior and exterior during the crevice corrosion. The difference in the sessile SRB cells quantities and SRB biofilms developments inside and outside crevice caused the galvanic effect between the carbon steel inside and outside the crevice, which further induced crevice corrosion. Increased crevice width reduced the galvanic effect, resulting in less crevice corrosion in wider crevice.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Desulfovibrio/metabolismo , Agua de Mar/microbiología , Acero/química , Microbiología del Agua , Corrosión
13.
ACS Appl Mater Interfaces ; 13(27): 31462-31473, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34196524

RESUMEN

In this study, Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been fabricated by a one-step hydrothermal method and used in the voltammetric detection of resorcinol (RS). The poor conductivity of MOFs in the field of electrochemical sensing is still a major challenge. A series of Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been synthesized with varying fractions of rGO and with a fixed amount of α-MnO2 via a facile method. These nanocomposites are well characterized using some sophisticated characterization techniques. The as-prepared nanohybrids have strongly promoted the redox reactions at the electrode surface due to their synergistic effects of improved conductivity, high electrocatalytic activity, an enlarged specific surface area, and a plethora of nanoscale level interfacial collaborations. The electrode modified with Cu-MOF/rGO/CuO/α-MnO2 has revealed superior electrochemical properties demonstrating linear differential pulse voltammetry (DPV) responses from a 0.2 to 22 µM RS concentration range (R2 = 0.999). The overall results of this sensing podium have shown excellent stability, good recovery, and a low detection limit of 0.2 µM. With excellent sensing performance achieved, the practicability of the sensor has been evaluated to detect RS in commercial hair color samples as well as in tap water and river water samples. Therefore, we envision that our hybrid nanostructures synthesized by the structural integration strategy will open new horizons in material synthesis and biosensing platforms.

14.
J Hazard Mater ; 403: 123661, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264869

RESUMEN

Bi/Bi2WO6-x heterostructures has been successfully prepared by a facile one-step hydrothermal method. By maneuvering reaction time and Bi/W molar ratio of the precursors, we have been able to selectively introduce oxygen vacancy and metallic Bi into Bi2WO6 nanostructures. The obtained Bi/Bi2WO6-x heterostructures with more oxygen vacancy and moderate metallic Bi exhibit significantly improved photocatalytic activity for the photodegradation of bisphenol A (BPA) and its analogues due to its great ability for the generation of singlet oxygen (1O2), which has proven to work as the main reactive oxygen species during photocatalysis. It is also found the 1O2 concentration is highly depended on and modulated by the content of oxygen vacancy and metallic bismuth. Besides, we also demonstrate that the obtained Bi/Bi2WO6-x products display efficient photocatalytic performance toward BPA derivatives degradation and enhanced stability to resist the interferences in the water matrix.

15.
J Phys Chem Lett ; 11(21): 9321-9328, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33089980

RESUMEN

Enzyme-mimicking inorganic nanoparticles, also known as nanozymes, have emerged as a rapidly expanding family of artificial enzymes that exhibit superior structural robustness and catalytic durability when serving as the surrogates of natural enzymes for widespread applications. However, the performance optimization of inorganic nanozymes has been pursued in a largely empirical fashion due to lack of generic design principles guiding the rational tuning of the nanozyme activities. Here we choose Au surface-roughened nanoparticles as a model plasmonic nanozyme that combines peroxidase-mimicking behaviors with tunable plasmonic characteristics to demonstrate the feasibility of fine-tuning nanozyme activities through plasmonic excitations using visible and near-infrared light sources. Taking full advantage of the unique plasmonic tunability offered by Au surface-roughened nanoparticles, we were able to unravel the detailed relationship between plasmonic excitations and nanozyme activities that underpins the hot electron-mediated working mechanism of peroxidase-mimicking plasmonic nanozymes.


Asunto(s)
Materiales Biomiméticos/química , Oro/química , Nanopartículas del Metal/química , Peroxidasas/química , Catálisis , Activación Enzimática , Peróxido de Hidrógeno/química , Cinética , Modelos Moleculares , Oxidación-Reducción , Procesos Fotoquímicos , Relación Estructura-Actividad , Propiedades de Superficie
16.
ACS Appl Mater Interfaces ; 11(26): 23482-23494, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31179681

RESUMEN

Nanoscale galvanic exchange confined by metallic nanoparticles is an intriguing structure-remodeling process that transforms geometrically simple solid nanoparticles into multimetallic hollow nanoparticles with increased structural complexity and compositional diversity. Using liquid polyols with intrinsic reducing capabilities as the reaction medium for nanoparticle-templated galvanic exchange represents an interesting paradigm shift, allowing us to interface galvanic exchange with oxidative etching and seed-mediated deposition without introducing any additional oxidizing or reducing agents. By kinetically maneuvering the interplay among galvanic Cu-Pt exchange, oxidative Cu etching, and seed-mediated Pt deposition, we have been able to selectively transform AuCu3 alloy nanoparticles into two architecturally distinct multimetallic heteronanostructures, namely, Au-Pt alloy skin-covered spongy nanoparticles and Pt nanodendrite-covered hollow nanoparticles, both of which exhibit unique structural features highly desirable for high-performance electrocatalysis. Using the formic acid oxidation and hydrogen evolution reactions in acidic electrolytes as model electrocatalytic reactions, we show that the multimetallic nanoparticles derived from AuCu3 alloy nanoparticles through polyol-mediated galvanic exchange reactions markedly outperform the commercial Pt/C benchmark catalysts in terms of both activity and durability. This work not only provides important mechanistic insights on how galvanic exchange dynamically interplays with other redox processes to rigorously dictate the versatile structural transformations of multimetallic nanoparticles but also sheds light on the detailed structure-property relationships underpinning the intriguing electrocatalytic behaviors of architecturally complex multimetallic heteronanostructures.

17.
Nanoscale ; 11(15): 7324-7334, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30938391

RESUMEN

Metal-semiconductor hybrid heteronanostructures exhibit intriguing multimodal photocatalytic behaviors dictated by multiple types of photoexcited charge carriers with distinct energy distribution profiles, excited-state lifetimes, and interfacial transfer dynamics. Here we take full advantage of the optical tunability offered by Au@SnO2 core-shell nanoparticles to systematically tune the frequencies of plasmonic electron oscillations in the visible and near-infrared over a broad spectral range well-below the energy thresholds for the interband transitions of Au and the excitonic excitations of SnO2. Employing Au@SnO2 core-shell nanoparticles as an optically tunable photocatalyst, we have been able to create energetic hot carriers exploitable for photocatalysis by selectively exciting the plasmonic intraband transitions and the d → sp interband transitions in the Au cores at energies below the band gap of the SnO2 shells. Using photocatalytic mineralization of organic dye molecules as model reactions, we show that the interband and plasmonic intraband hot carriers exhibit drastically distinct photocatalytic behaviors in terms of charge transfer pathways, excitation power dependence, and apparent photonic efficiencies. The insights gained from this work form an important knowledge foundation guiding the rational optimization of hot carrier-driven chemical transformations on nanostructured metal-semiconductor hybrid photocatalysts.

18.
Nanoscale ; 10(39): 18457-18462, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30272760

RESUMEN

This work presents multiple experimental evidences coherently showing that the versatile structural evolution of Au nanocrystals during seed-mediated growth under the guidance of foreign metal ions and halide-containing surfactants is essentially dictated by the dynamic interplay between oxidative etching and nanocrystal growth. Coupling nanocrystal growth with oxidative etching under kinetically controlled conditions enables the in situ surface carving of the growing nanocrystals, through which the surface topography of shape-controlled nanocrystals can be deliberately tailored on the nanometer length-scale.

19.
Langmuir ; 34(14): 4340-4350, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29566338

RESUMEN

Galvanic replacement reactions dictated by deliberately designed nanoparticulate templates have emerged as a robust and versatile approach that controllably transforms solid monometallic nanocrystals into a diverse set of architecturally more sophisticated multimetallic hollow nanostructures. The galvanic atomic exchange at the nanoparticle/liquid interfaces induces a series of intriguing structure-transforming processes that interplay over multiple time and length scales. Using colloidal Au-Cu alloy and intermetallic nanoparticles as structurally and compositionally fine-tunable bimetallic sacrificial templates, we show that atomically intermixed bimetallic nanocrystals undergo galvanic replacement-driven structural transformations remarkably more complicated than those of their monometallic counterparts. We interpret the versatile structure-transforming behaviors of the bimetallic nanocrystals in the context of a unified mechanistic picture that rigorously interprets the interplay of three key structure-evolutionary pathways: dealloying, Kirkendall diffusion, and Ostwald ripening. By deliberately tuning the compositional stoichiometry and atomic-level structural ordering of the Au-Cu bimetallic nanocrystals, we have been able to fine-maneuver the relative rates of dealloying and Kirkendall diffusion with respect to that of Ostwald ripening through which an entire family of architecturally distinct complex nanostructures are created in a selective and controllable manner upon galvanic replacement reactions. The insights gained from our systematic comparative studies form a central knowledge framework that allows us to fully understand how multiple classic effects and processes interplay within the confinement by a colloidal nanocrystal to synergistically guide the structural transformations of complex nanostructures at both the atomic and nanoparticulate levels.

20.
Nano Lett ; 17(7): 4443-4452, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28590743

RESUMEN

The interfacial adsorption, desorption, and exchange behaviors of thiolated ligands on nanotextured Au nanoparticle surfaces exhibit phenomenal site-to-site variations essentially dictated by the local surface curvatures, resulting in heterogeneous thermodynamic and kinetic profiles remarkably more sophisticated than those associated with the self-assembly of organothiol ligand monolayers on atomically flat Au surfaces. Here we use plasmon-enhanced Raman scattering as a spectroscopic tool combining time-resolving and molecular fingerprinting capabilities to quantitatively correlate the ligand dynamics with detailed molecular structures in real time under a diverse set of ligand adsorption, desorption, and exchange conditions at both equilibrium and nonequilibrium states, which enables us to delineate the effects of nanoscale surface curvature on the binding affinity, cooperativity, structural ordering, and the adsorption/desorption/exchange kinetics of organothiol ligands on colloidal Au nanoparticles. This work provides mechanistic insights on the key thermodynamic, kinetic, and geometric factors underpinning the surface curvature-dependent interfacial ligand behaviors, which serve as a central knowledge framework guiding the site-selective incorporation of desired surface functionalities into individual metallic nanoparticles for specific applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...