Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Sci Rep ; 14(1): 10295, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704415

RESUMEN

Lysine crotonylation (Kcr) is a recently discovered histone acylation modification that is closely associated with gene expression, cell proliferation, and the maintenance of stem cell pluripotency and indicates the transcriptional activity of genes and the regulation of various biological processes. During cell culture, the introduction of exogenous croconic acid disodium salt (Nacr) has been shown to modulate intracellular Kcr levels. Although research on Kcr has increased, its role in cell growth and proliferation and its potential regulatory mechanisms remain unclear compared to those of histone methylation and acetylation. Our investigation demonstrated that the addition of 5 mM Nacr to cultured bovine fibroblasts increased the expression of genes associated with Kcr modification, ultimately promoting cell growth and stimulating cell proliferation. Somatic cell nuclear transfer of donor cells cultured in 5 mM Nacr resulted in 38.1% blastocyst development, which was significantly greater than that in the control group (25.2%). This research is important for elucidating the crotonylation modification mechanism in fibroblast proliferation to promote the efficacy of somatic cell nuclear transfer.


Asunto(s)
Proliferación Celular , Fibroblastos , Histonas , Técnicas de Transferencia Nuclear , Animales , Bovinos , Fibroblastos/metabolismo , Fibroblastos/citología , Proliferación Celular/efectos de los fármacos , Histonas/metabolismo , Desarrollo Embrionario , Blastocisto/metabolismo , Blastocisto/citología , Lisina/metabolismo , Crotonatos/metabolismo , Células Cultivadas , Procesamiento Proteico-Postraduccional , Femenino
2.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791317

RESUMEN

The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.


Asunto(s)
Senescencia Celular , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Bovinos , Senescencia Celular/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células Cultivadas
3.
Animals (Basel) ; 13(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893940

RESUMEN

(1) Background: Myostatin (MSTN) is a protein that regulates skeletal muscle development and plays a crucial role in maintaining animal body composition and muscle structure. The loss-of-function mutation of MSTN gene can induce the muscle hypertrophic phenotype. (2) Methods: Growth indexes and blood parameters of the cattle of different months were analyzed via multiple linear regression. (3) Results: Compared with the control group, the body shape parameters of F2 cattle were improved, especially the body weight, cross height, and hip height, representing significant development of hindquarters, and the coat color of the F2 generation returned to the yellow of Luxi cattle. As adults, MSTN gene-edited bulls have a tall, wide acromion and a deep, wide chest. Both the forequarters and hindquarters are double-muscled with clear muscle masses. The multiple linear regression demonstrates that MSTN gene-edited hybrid beef cattle gained weight due to the higher height of the hindquarters. Significant differences in blood glucose, calcium, and low-density lipoprotein. Serum insulin levels decreased significantly at 24 months of age. MSTN gene editing improves the adaptability of cattle. (4) Conclusions: Our findings suggest that breeding with MSTN gene-edited Luxi bulls can improve the growth and performance of hybrid cattle, with potential benefits for both farmers and consumers.

4.
Metabolites ; 13(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37512543

RESUMEN

Myostatin (MSTN) is a negative regulator of skeletal muscle genesis during development. MSTN mutation leads to increased lean meat production and reduced fat deposition in livestock. However, the mechanism by which MSTN promotes myogenesis by regulating metabolism is not clear. In this study, we compared the metabolomics of the livers of wild-type (WT) and MSTN mutation cattle (MT), and found changes in the content and proportion of fatty acids and bile acids in MT cattle. The differential metabolites were enriched in sterol synthesis and primary bile acid synthesis. We further analyzed the expression of genes involved in the regulation of lipid and bile acid metabolism, and found that the loss of MSTN may alter lipid synthesis and bile acid metabolism. This study provides new basic data for MSTN mutations in beef cattle breeding.

5.
Int J Mol Sci ; 24(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175828

RESUMEN

Myostatin (MSTN), a growth and differentiation factor, plays an important role in regulating skeletal muscle growth and development. MSTN knockout (MSTN-KO) leads to skeletal muscle hypertrophy and regulates metabolic homeostasis. Moreover, MSTN is also detected in smooth muscle. However, the effect of MSTN-KO on smooth muscle has not yet been reported. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in esophageal smooth muscles of MSTN-KO Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 608.5 ± 17.62 kg) and wild-type (WT) Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 528.25 ± 11.03 kg). The transcriptome was sequenced using the Illumina Novaseq™ 6000 sequence platform. In total, 337 significantly up- and 129 significantly down-regulated genes were detected in the MSTN-KO cattle compared with the WT Chinese Luxi Yellow cattle. Functional enrichment analysis indicated that the DEGs were mainly enriched in 67 signaling pathways, including cell adhesion molecules, tight junction, and the cGMP-PKG signaling pathway. Metabolomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 130 differential metabolites between the groups, with 56 up-regulated and 74 down-regulated in MSTN knockout cattle compared with WT cattle. Differential metabolites were significantly enriched in 31 pathways, including glycerophospholipid metabolism, histidine metabolism, glutathione metabolism, and purine metabolism. Transcriptome and metabolome were combined to analyze the significant enrichment pathways, and there were three metabolically related pathways, including histidine metabolism, purine metabolism, and arginine and proline metabolism. These results provide important references for in-depth research on the effect of MSTN knockout on smooth muscle.


Asunto(s)
Miostatina , Transcriptoma , Animales , Bovinos , Miostatina/genética , Miostatina/metabolismo , Cromatografía Liquida , Histidina/metabolismo , Espectrometría de Masas en Tándem , Músculo Liso/metabolismo , Metaboloma , Purinas/metabolismo , Músculo Esquelético/metabolismo
6.
Zool Res ; 44(3): 505-521, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070575

RESUMEN

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Asunto(s)
Fertilidad , Homeostasis , FN-kappa B , Testículo , FN-kappa B/metabolismo , Fertilidad/genética , Fertilidad/inmunología , Humanos , Masculino , Testículo/inmunología , Testículo/metabolismo , Homeostasis/inmunología , Animales , Ratones , Células HEK293 , Espermatogénesis , Inflamación , Regiones Promotoras Genéticas/genética , Activación Transcripcional , Técnicas de Silenciamiento del Gen
8.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555347

RESUMEN

Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (Mstn-/-) mouse has a hypermuscular phenotype. The muscle metabolism of the Mstn-/- mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the Mstn-/- mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the Mstn-/- mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.


Asunto(s)
Mitocondrias , Músculo Esquelético , Miostatina , Fosforilación Oxidativa , Animales , Ratones , Adenosina Trifosfato/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/metabolismo
9.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430183

RESUMEN

Myostatin (Mstn) is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes. The deletion of the Mstn gene in mice leads to reduced mitochondrial functions. However, the underlying regulatory mechanisms remain unclear. In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection. Mstn-KO mice exhibited significantly larger skeletal muscles. Meanwhile, Mstn knockout regulated the organ weights of mice. Moreover, we found that Mstn knockout reduced the basal metabolic rate, muscle adenosine triphosphate (ATP) synthesis, activities of mitochondrial respiration chain complexes, tricarboxylic acid cycle (TCA) cycle, and thermogenesis. Mechanistically, expressions of silent information regulator 1 (SIRT1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were down-regulated, while peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) acetylation modification increased in the Mstn-KO mice. Skeletal muscle cells from Mstn-KO and WT were treated with AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR), and the AMPK inhibitor Compound C, respectively. Compared with the wild-type (WT) group, Compound C treatment further down-regulated the expression or activity of pAMPK, SIRT1, citrate synthase (CS), isocitrate dehydrogenase (ICDHm), and α-ketoglutarate acid dehydrogenase (α-KGDH) in Mstn-KO mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn knockout affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway. The present study reveals a new mechanism for Mstn knockout in regulating energy homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Miostatina , Animales , Ratones , Aminoimidazol Carboxamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
10.
iScience ; 25(10): 105121, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185365

RESUMEN

Despite intense research in understanding Clostridium perfringens (C. perfringens) pathogenesis, the mechanisms by which it is cleared from the host are largely unclarified. In C. perfringens gas gangrene and enterocolitis model, Mlkl -/- mice, lacking mixed lineage kinase-like protein (MLKL), are more susceptible to C. perfringens infection. Mlkl deficiency results in a defect in inflammasome activation, and IL-18 and IL-1ß releases. Exogenous administration of recombinant IL-18 is able to rescue the susceptibility of Mlkl -/- mice. Notably, K+ efflux-dependent NLRP3 inflammasome signaling downstream of active MLKL promotes bacterial killing and clearance. Interestingly, the defect of bactericidal activity is also mediated by decreased classical extracellular trap formation in the absence of Mlkl. Our results demonstrate that MLKL mediates extracellular trap formation in a NLRP3 inflammasome-dependent manner. These findings highlight the requirement of MLKL for host defense against C. perfringens infection through enhancing NLRP3 inflammasome-extracellular traps axis.

11.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077543

RESUMEN

Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.


Asunto(s)
Núcleo Celular , Embrión de Mamíferos , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Núcleo Celular/metabolismo , Clonación de Organismos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Femenino , Mitocondrias/metabolismo , Técnicas de Transferencia Nuclear , Oocitos/metabolismo , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Ovinos/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 3076-3089, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36002433

RESUMEN

Myostatin (Mstn) is known as growth/differentiation factor-8 (GDF-8). Knockout or knockdown of Mstn gene promotes muscle development and reduces fat content. Here we prepared Mstn knockdown mice by RNA interference, then the morphology of the skeletal muscle, the content of triglyceride (TG), the content and composition of fatty acids in the skeletal muscle were detected. The expression of Mstn reduced in muscle of Mstn knockdown mice compared to the controls. The cross sectional areas of the skeletal muscle myofibers were significantly larger while the content of TG was less than that of the controls, and the ratios of n-3/n-6 and unsat/sat in the knockdown mice increased significantly. Subsequently, we detected the expression of genes associated with fatty acid metabolism. The expression of the genes associated with lipolysis and fatty acid transportation were up-regulated, while the genes associated with fatty acid synthesis were down-regulated. Of these genes, the up-regulation of a gene associated with ß oxidation, Cpt1b, was up-regulated remarkably. We further detected the enzyme activity of CPT1 in skeletal muscle and obtained the same results with gene expression. Moreover, chromatin immunoprecipitation assay was performed and we found that SMAD3, a transcription factor downstream of Mstn, directly binds to the promoter of Cpt1b gene. These results showed that knockdown of Mstn up-regulated the expression of Cpt1b through the binding of SMAD3 to the promoter of Cpt1b, then promoted the ß oxidation metabolism of intramuscular fatty acids.


Asunto(s)
Metabolismo de los Lípidos , Miostatina , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/metabolismo , Oxidación-Reducción , Regulación hacia Arriba
13.
Aging (Albany NY) ; 14(13): 5478-5492, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35802554

RESUMEN

Isocitrate dehydrogenases (IDH) catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. IDH1 mutation has been reported in various tumors especially Cholangiocarcinoma, while the IDH1_R132H is reported to be the most common mutation of IDH1. IDH1_R132H inhibitors are effective anti-cancer drugs and have shown significant therapeutic effects in clinical. In this study, two novel natural compounds were identified to combine respectively with IDH1_R132H with a stronger binding force with conductive to interaction energy. They also showed low toxicity potential. Molecular dynamics simulation analysis demonstrated that the candidate ligands-IDH1_R132H complexes is stable in natural circumstances with favorable potential energy. Thus, Styraxlignolide F and Tremulacin were screened as promising IDH1_R132H inhibitors. We provide a solid foundation for the design and development of IDH1_R132H targeted drugs.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Antineoplásicos/farmacología , Neoplasias Encefálicas/genética , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitratos , Mutación
14.
Int J Biol Macromol ; 218: 168-180, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870621

RESUMEN

Cryopreservation of bovine semen plays a vital role in accelerating genetic improvement and elite breeding, but it has a detrimental effect on sperm quality, resulting in the decline of the reproductive efficiency. The glycosylation modification of protein has irreplaceable roles in spermatozoa. Herein, the effect of cryopreservation on glycoproteins of bovine spermatozoa has been studied for the first time using a tandem mass tag (TMT)-labeled quantitative glycoproteome. A total of 2598 proteins and 492 glycoproteins were identified, including 83 different expression proteins (DEPs) and 44 different expression glycosylated proteins (DEGPs) between fresh and frozen spermatozoa. Thirty-three DEPs are glycoproteins, which demonstrates that glycoproteins of bovine sperm were seriously affected by cryopreservation. Moreover, the effects include glycoprotein expression, glycosylation modification, and substructure localization for proteins such as glycoproteins TEX101, ACRBP, and IZOMU4. The biologic functions of the 115 changed proteins are mainly involved in sperm capacitation, migration in female genitalia, and sperm-egg interaction. Mostly key regulators were identified to be glycoproteins, which confirms that glycosylated proteins played important roles in bovine sperm. This comprehensive study of sperm glycoproteins helps to unravel the cryoinjury mechanisms, thus implying that glycoprotein protection should be an effective way to improve the quality of frozen sperm.


Asunto(s)
Semen , Motilidad Espermática , Animales , Bovinos , Criopreservación/métodos , Femenino , Glicoproteínas/metabolismo , Masculino , Semen/química , Capacitación Espermática , Espermatozoides/metabolismo
15.
Animals (Basel) ; 12(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35681863

RESUMEN

This study aimed to explore the genome-wide DNA methylation differences between muscle and tail-fat tissues of DairyMeade sheep (thin-tailed, lean carcass) and Mongolian sheep (fat-tailed, fat-deposited carcass). Whole-genome bisulfite sequencing (WGBS) was conducted and the global DNA methylation dynamics were mapped. Generally, CGs had a higher DNA methylation level than CHHs and CHGs, and tail-fat tissues had higher CG methylation levels than muscle tissues. For DNA repeat elements, SINE had the highest methylation level, while Simple had the lowest. When dividing the gene promoter region into small bins (200 bp per bin), the bins near the transcription start site (±200 bp) had the highest CG count per bin but the lowest DNA methylation levels. A series of DMRs were identified in muscle and tail-fat tissues between the two breeds. Among them, the introns of gene CAMK2D (calcium/calmodulin-dependent protein kinase II δ) demonstrated significant DNA methylation level differences between the two breeds in both muscle and tail-fat tissues, and it may play a crucial role in fat metabolism and meat quality traits. This study may provide basic datasets and references for further epigenetic modification studies during sheep genetic improvement.

16.
Oxid Med Cell Longev ; 2022: 3497644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663205

RESUMEN

During exercise, the body's organs and skeletal muscles produce reactive oxygen species (ROS). Excessive ROS can destroy cellular lipids, sugars, proteins, and nucleotides and lead to cancer. The production of nicotinamide adenine dinucleotide phosphate (NADPH) by the pentose phosphate pathway (PPP) is an auxiliary process of the cellular antioxidant system that supplements the reducing power of glutathione (GSH) to eliminate ROS in the cell. Myostatin (MSTN) is mainly expressed in skeletal muscle and participates in the regulation of skeletal muscle growth and development. Loss of MSTN leads to muscular hypertrophy, and MSTN deficiency upregulates glycolysis. However, the effect of MSTN on the PPP has not been reported. This study investigated the effect of MSTN on muscle antioxidant capacity from a metabolic perspective. We found that reducing MSTN modulates AMP-activated protein kinase (AMPK), a key molecule in cellular energy metabolism that directly regulates glucose metabolism through phosphorylation. Downregulation of MSTN promotes tyrosine modification of glucose-6-phosphate-dehydrogenase (G6PD) by AMPK and is regulated by the Smad signaling pathway. The Smad2/3 complex acts as a transcription factor to inhibit the AMPK expression. These results suggest that reduced MSTN expression inhibits the Smad signaling pathway, promotes AMPK expression, enhances the activity of G6PD enzyme, and enhances the antioxidant capacity of nonenzymatic GSH.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Miostatina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antioxidantes/metabolismo , Bovinos , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Miostatina/farmacología , Especies Reactivas de Oxígeno/metabolismo
17.
Life (Basel) ; 12(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35629295

RESUMEN

Chinese Yellow Cattle, an ancient and domesticated breed for draft service, provide unique animal genetic resources with excellent genetic features, including crude feed tolerance, good stress resistance, strong adaptability, and tender meat quality; however, their production performance and meat yield are significantly inferior. Herein, the myostatin gene (MSTN), a negative regulator of skeletal muscle development, was knocked out by CRISPR/Cas9 technology. Eight MSTN gene-edited bull calves (MT) were born, and six of them are well-developed. Compared with the control cattle (WT), the growth trait indexes of MT cattle were generally increased, and the hindquarters especially were significantly improved. The biochemical indexes and the semen characteristics demonstrated that MT bulls were healthy and fertile. Consistent with our conjecture, the wobble and beating of MT bull spermatozoa were significantly higher than that of WT. Nine sperm motility-related proteins and nineteen mitochondrial-related proteins were identified by up-regulation in MT bull spermatozoa using FLQ proteomic technique and act to govern sperm flagellum assembly, organization, and beating and provide sufficient energy for sperm motility. The current study confirmed that the MSTN gene-edited Chinese Yellow cattle have improved growth traits and normal fertility, which can be used for beef cattle production and breeding.

18.
Front Mol Biosci ; 9: 857491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517863

RESUMEN

The fatty acid dehydrogenase fat-1 gene, derived from Caenorhabditis elegans, encodes n-3 polyunsaturated fatty acid dehydrogenase (Δ15 desaturase) and catalyzes the 18-20-carbon n-6 polyunsaturated fatty acids (n-6 PUFA) to generate corresponding n-3 polyunsaturated fatty acids (n-3 PUFA). Subsequently, fat-1 can influence the n-6: n-3 PUFA ratio in fat-1 transgenic cells. This study aimed to explore which processes of energy metabolism are affected exogenous fat-1 transgene and the relationship between these effects and DNA methylation. Compared with the wild-type group, the n-3 PUFA content in fat-1 transgenic bovine fetal fibroblasts was significantly increased, and the n-6 PUFA content and the n-6: n-3 PUFA ratio decreased. In the context of energy metabolism, the increase of exogenous fat-1 transgene decreased ATP synthesis by 39% and reduced the activity and expression of key rate-limiting enzymes in glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation, thus weakening the cells' capacity for ATP production. DNA methylation sequencing indicated that this inhibition of gene expression may be due to altered DNA methylation that regulates cell energy metabolism. Exogenous fat-1 transgenic cells showed changes in the degree of methylation in the promoter region of genes related to energy metabolism rate-limiting enzymes. We suggest that alters the balance of n-6/n-3 PUFA could regulate altered DNA methylation that affect mitochondrial energy metabolism.

19.
Front Microbiol ; 13: 844962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401485

RESUMEN

Myostatin (MSTN), a major negative regulator of skeletal muscle mass and an endocrine factor, can regulate the metabolism of various organisms. Inhibition of the MSTN gene can improve meat production from livestock. Rumen microorganisms are associated with production and health traits of cattle, but changes in the microbial composition and metabolome in the four stomach compartments of MSTN gene-edited cattle have not previously been studied. Our results indicated that microbial diversity and dominant bacteria in the four stomach compartments were very similar between MSTN gene-edited and wild-type (WT) cattle. The microbiota composition was significantly different between MSTN gene-edited and WT cattle. Our results show that the relative abundance of the phylum Proteobacteria in the reticulum of MSTN gene-edited cattle was lower than that of WT cattle, whereas the relative abundance of the genus Prevotella in the omasum of MSTN gene-edited cattle was significantly higher than that of WT cattle. Metabolomics analysis revealed that the intensity of L-proline and acetic acid was significantly different in the rumen, reticulum, and abomasum between the two types of cattle. Meanwhile, pathway topology analysis indicated that the differential metabolites were predominantly involved in arginine biosynthesis and glutamate metabolism in the rumen, reticulum, and omasum but were mainly involved in pyruvate metabolism and glycolysis/gluconeogenesis in the abomasum. Spearman correlation network analysis further demonstrated that there was a significant correlation between microflora composition and metabolic pathways. These findings provide clues for studying nutrient digestion and absorption ability of MSTN gene-edited cattle.

20.
Animals (Basel) ; 12(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35405915

RESUMEN

Moderate exercise can strengthen the body, however, exhaustive exercise generates large amounts of reactive oxygen species (ROS). Although erythrocytes have antioxidant systems that quickly eliminate ROS, erythrocytes become overwhelmed by ROS when the body is under oxidative stress, such as during exhaustive exercise. Myostatin (MSTN) has important effects on muscle hair development. Individuals lacking myostatin (MSTN) exhibit increased muscle mass. The purpose of this study was to investigate the mechanism by which MSTN affects erythrocyte antioxidant changes after exhaustive exercise in cattle. Antioxidant and metabolite detection analysis, western blotting, immunofluorescence, and fatty acid methyl ester analysis were used to assess exercise-associated antioxidant changes in erythrocytes with or without MSTN. Knockdown of MSTN enhances Glucose-6-phosphate dehydrogenase (G6PD) activity after exhaustive exercise. MSTN and its receptors were present on the erythrocyte membrane, but their levels, especially that of TGF-ß RI, were significantly reduced in the absence of MSTN and following exhaustive exercise. Our results suggest that knockout of MSTN accelerates the pentose phosphate pathway (PPP), thereby enhancing the antioxidant capacity of erythrocytes. These results provide important insights into the role of MSTN in erythrocyte antioxidant regulation after exhaustive exercise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA