Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798371

RESUMEN

Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded the dynamics of prefrontal NE and ACh in mice performing an inhibitory control task. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Chemogenetic inhibition of locus coeruleus (LC) neurons that project to the basal forebrain region reduced inhibitory control performance to chance levels. However, this manipulation did not diminish the difference in NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between the successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair the inhibitory control performance, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the prefrontal cortex with and without inhibiting LC neurons that project to the basal forebrain during inhibitory control. The LC inhibition reduced the number of prefrontal neurons encoding inhibitory control. Demixed principal component analysis (dPCA) further revealed that population firing patterns representing inhibitory control were impaired by the LC inhibition. Disparities in NE-ACh phase synchrony relevant to inhibitory control occurred only in the prefrontal cortex, but not in the parietal cortex, somatosensory cortex, and the somatosensory thalamus. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further revealed that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.

2.
bioRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746204

RESUMEN

Dopamine in the nucleus accumbens ramps up as animals approach desired goals. These ramps have received intense scrutiny because they seem to violate long-held hypotheses on dopamine function. Furthermore, it has been proposed that they are driven by local acetylcholine release, i.e., that they are mechanistically separate from dopamine signals related to reward prediction errors. Here, we tested this hypothesis by simultaneously recording accumbal dopamine and acetylcholine signals in rats executing a task involving motivated approach. Contrary to recent reports, we found that dopamine ramps were not coincidental with changes in acetylcholine. Instead, we found that acetylcholine could be positively, negatively, or uncorrelated with dopamine depending on whether the task phase was determined by a salient cue, reward prediction error, or active approach, respectively. Our results suggest that accumbal dopamine and acetylcholine are largely independent but may combine to engage different postsynaptic mechanisms depending on the behavioral task states.

3.
Neuron ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38547869

RESUMEN

Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.

4.
Nat Methods ; 21(4): 692-702, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443508

RESUMEN

The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.


Asunto(s)
Receptores Acoplados a Proteínas G , Serotonina , Humanos , Ratones , Animales , Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Corteza Cerebral/metabolismo
5.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352527

RESUMEN

Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.

6.
Nat Methods ; 21(4): 680-691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38036855

RESUMEN

Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a large network of dopaminergic projections. To dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent G-protein-coupled receptor activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity and signal-to-noise ratio with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.


Asunto(s)
Dopamina , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/fisiología , Receptores Dopaminérgicos , Encéfalo , Receptores Acoplados a Proteínas G
7.
Science ; 382(6672): eabq8173, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37972184

RESUMEN

Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.


Asunto(s)
Técnicas Biosensibles , Islotes Pancreáticos , Neuronas , Neuropéptidos , Receptores Acoplados a Proteínas G , Humanos , Fluorescencia , Células HEK293 , Neuropéptidos/análisis , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Neuronas/química , Corteza Cerebral/química , Animales , Ratas , Islotes Pancreáticos/química
8.
bioRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662187

RESUMEN

Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a vast network of dopaminergic projections. To fully dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent GPCR activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity, and signal-to-noise properties with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in freely moving mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala, and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.

9.
Neuron ; 111(10): 1564-1576.e6, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36924772

RESUMEN

Histamine (HA) is a key biogenic monoamine involved in a wide range of physiological and pathological processes in both the central and peripheral nervous systems. Because the ability to directly measure extracellular HA in real time will provide important insights into the functional role of HA in complex circuits under a variety of conditions, we developed a series of genetically encoded G-protein-coupled receptor-activation-based (GRAB) HA (GRABHA) sensors with good photostability, sub-second kinetics, nanomolar affinity, and high specificity. Using these GRABHA sensors, we measured electrical-stimulation-evoked HA release in acute brain slices with high spatiotemporal resolution. Moreover, we recorded HA release in the preoptic area of the hypothalamus and prefrontal cortex during the sleep-wake cycle in freely moving mice, finding distinct patterns of HA dynamics between these specific brain regions. Thus, GRABHA sensors are robust tools for measuring extracellular HA transmission in both physiological and pathological processes.


Asunto(s)
Liberación de Histamina , Histamina , Animales , Ratones , Encéfalo , Hipotálamo , Receptores Acoplados a Proteínas G
10.
Surg Obes Relat Dis ; 18(10): 1209-1217, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35750565

RESUMEN

BACKGROUND: Obesity has become a global problem that poses a serious threat to human health. Laparoscopic sleeve gastrectomy (LSG) is an effective long-term treatment. However, the weight loss of some patients after LSG is still insufficient. It is necessary to investigate the factors associated with inadequate weight loss after LSG. OBJECTIVE: The objective of this study was to explore whether preoperative insulin secretion could be associated with weight loss after LSG in patients with obesity. SETTING: This is a single-center prospective cohort study conducted in a university hospital. METHODS: Patients from a prospective database who underwent LSG were analyzed. All 178 participants underwent a 75-g oral glucose tolerance test (OGTT) to assess preoperative insulin and c-peptide secretion before LSG. The areas under the curve (AUCs) for glucose, insulin, and c-peptide were determined in the OGTT. The percentage of excess weight loss (%EWL) and the percentage of total weight loss (%TWL) were used to estimate the effect of weight loss after LSG. Regression models were used to assess the correlation between preoperative insulin and c-peptide secretion with %EWL ≥75% and TWL ≥35% at 12 months after LSG. RESULTS: The AUCs of insulin and c-peptide were significantly lower in the %EWL ≥75% and %TWL ≥35% groups at 0-30 minutes, 0-60 minutes, and 0-120 minutes during the OGTT. At 30, 60, and 120 minutes during the OGTT, c-peptide levels were significantly lower in the %EWL ≥75% group and %TWL ≥35% group. The preoperative c-peptide level at 30 minutes during the OGTT (C30) was significantly negatively correlated with %EWL (ß = -.37, P < .001) and %TWL (ß = -.28, P = .011). Univariate logistic regression analysis showed that preoperative C30 was associated with %EWL ≥75% and %TWL ≥35% after LSG. According to multiple logistic regression analysis, patients with a low preoperative C30 had an 8-fold higher %TWL ≥35% after LSG than those with a high C30 (odds ratio: 8.41 [95% confidence interval: 1.46-48.58], P = .017). Similarly, patients with a low preoperative C30 had a 7-fold higher EWL% ≥75% after LSG than patients with a high C30 (odds ratio: 7.25 [95% confidence interval: 1.11-47.50], P = .039). CONCLUSIONS: The rate of weight loss after LSG is low among patients with preoperative hyperinsulinemia. The preoperative c-peptide level at 30 minutes during the OGTT is associated with weight loss after LSG.


Asunto(s)
Laparoscopía , Obesidad Mórbida , Índice de Masa Corporal , Péptido C , Gastrectomía/efectos adversos , Glucosa , Humanos , Insulina , Obesidad Mórbida/complicaciones , Estudios Prospectivos , Estudios Retrospectivos , Resultado del Tratamiento , Pérdida de Peso
11.
Zhongguo Zhong Yao Za Zhi ; 43(1): 119-122, 2018 Jan.
Artículo en Chino | MEDLINE | ID: mdl-29552821

RESUMEN

In order to explore the anti-inflammatory activity and active ingredient basis from the leaves of the Belamcanda chinensis and Iris tectorum, we established an HPLC method for simultaneous determination of six anti-inflammatory active ingredient contents in the root of the B. chinensis and I. tectorum as well as their leaves with different dry methods, and the anti-inflammatory effects of the extract were studied by the mouse ear swelling experiment. The HPLC analysis was performed on an Agilent WondaSil© C18-WR(4.6 mm×250 mm,5 µm),with isocratic elution of acetonitrile-0.1% ortho-phosphoric acid solution at a flow rate of 1. 0 mL·min⁻¹ and the detection was carried out at 265 nm. The chemical compositions of the B. chinensis and I. tectorum are similar but the contents of them are obviously different. Both rhizome and leaf extract of B. chinensis and I. tectorum had inhibitory effects on inflamed mice induced by dimethylbenzene and had anti-inflammatory effects by animal experiment, which could lay the material and active foundation for the development of the non-medicinal parts of the B. chinensis and I. tectorum.


Asunto(s)
Antiinflamatorios/farmacología , Género Iris/química , Fitoquímicos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Ratones , Fitoquímicos/aislamiento & purificación , Hojas de la Planta/química , Rizoma/química
12.
Zhongguo Zhong Yao Za Zhi ; 39(23): 4566-70, 2014 Dec.
Artículo en Chino | MEDLINE | ID: mdl-25911802

RESUMEN

Through study on the correlation between Atractylodis macrocephala lactones ingredient content and topographic factors, we researched regionalization from topography of five main producing provinces of the country, in order to provide a scientific basis for A. macrocephala reasonable cultivation. By sampling from 40 origins of five main producing provinces of the country, the variation of A. macrocephala lactones ingredient content in different conditions of topographic factors and the effect of altitude, slope and aspect was analyzed by SPSS. Then according to the relationship between A. macrocephala lactones ingredient content and topographic factors, the ecological suitability regionalization was conducted by using ArcGIS based on topographic factors. It is suitable for growth of A. macrocephala in the hilly and mountainous areas of southern whose A. macrocephala lactones ingredient content is in high levels. It is unsuitable for growth of A. macrocephala in Northern plain areas, but we can cultivate A. macrocephala in the hilly and mountainous areas of Northern. The most suitable topographic condition for cultivation of A. macrocephala : altitude 200 meters above, slope 3.00-4.99 degrees.


Asunto(s)
Atractylodes/crecimiento & desarrollo , Ecosistema , Altitud , Atractylodes/química , China , Conservación de los Recursos Naturales , Medicamentos Herbarios Chinos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...