Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 41(9): 1928-1940, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33441435

RESUMEN

Choice behavior is characterized by temporal discounting, i.e., preference for immediate rewards given a choice between immediate and delayed rewards. Agouti-related peptide (AgRP)-expressing neurons located in the arcuate nucleus of the hypothalamus (ARC) regulate food intake and energy homeostasis, yet whether AgRP neurons influence choice behavior and temporal discounting is unknown. Here, we demonstrate that motivational state potently modulates temporal discounting. Hungry mice (both male and female) strongly preferred immediate food rewards, yet sated mice were largely indifferent to reward delay. More importantly, selective optogenetic activation of AgRP-expressing neurons or their axon terminals within the posterior bed nucleus of stria terminalis (BNST) produced temporal discounting in sated mice. Furthermore, activation of neuropeptide Y (NPY) type 1 receptors (Y1Rs) within the BNST is sufficient to produce temporal discounting. These results demonstrate a profound influence of hypothalamic signaling on temporal discounting for food rewards and reveal a novel circuit that determine choice behavior.SIGNIFICANCE STATEMENT Temporal discounting is a universal phenomenon found in many species, yet the underlying neurocircuit mechanisms are still poorly understood. Our results revealed a novel neural pathway from agouti-related peptide (AgRP) neurons in the hypothalamus to the bed nucleus of stria terminalis (BNST) that regulates temporal discounting in decision-making.


Asunto(s)
Amígdala del Cerebelo/fisiología , Descuento por Demora/fisiología , Hipotálamo/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Femenino , Masculino , Ratones
2.
Nat Commun ; 10(1): 2715, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222009

RESUMEN

Most adaptive behaviors require precise tracking of targets in space. In pursuit behavior with a moving target, mice use distance to target to guide their own movement continuously. Here, we show that in the sensorimotor striatum, parvalbumin-positive fast-spiking interneurons (FSIs) can represent the distance between self and target during pursuit behavior, while striatal projection neurons (SPNs), which receive FSI projections, can represent self-velocity. FSIs are shown to regulate velocity-related SPN activity during pursuit, so that movement velocity is continuously modulated by distance to target. Moreover, bidirectional manipulation of FSI activity can selectively disrupt performance by increasing or decreasing the self-target distance. Our results reveal a key role of the FSI-SPN interneuron circuit in pursuit behavior and elucidate how this circuit implements distance to velocity transformation required for the critical underlying computation.


Asunto(s)
Cuerpo Estriado/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Animales , Técnicas de Observación Conductual/métodos , Cuerpo Estriado/citología , Cuerpo Estriado/diagnóstico por imagen , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Imagen Óptica , Conducta Predatoria/fisiología , Conducta Sexual Animal/fisiología
3.
Curr Biol ; 27(24): 3763-3770.e3, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29199075

RESUMEN

Considerable evidence implicates the basal ganglia in interval timing, yet the underlying mechanisms remain poorly understood. Using a novel behavioral task, we demonstrate that head-fixed mice can be trained to show the key features of timing behavior within a few sessions. Single-trial analysis of licking behavior reveals stepping dynamics with variable onset times, which is responsible for the canonical Gaussian distribution of timing behavior. Moreover, the duration of licking bouts decreased as mice became sated, showing a strong motivational modulation of licking bout initiation and termination. Using optogenetics, we examined the role of the basal ganglia output in interval timing. We stimulated a pathway important for licking behavior, the GABAergic output projections from the substantia nigra pars reticulata to the deep layers of the superior colliculus. We found that stimulation of this pathway not only cancelled licking but also delayed the initiation of anticipatory licking for the next interval in a frequency-dependent manner. By combining quantitative behavioral analysis with optogenetics in the head-fixed setup, we established a new approach for studying the neural basis of interval timing.


Asunto(s)
Ganglios Basales/fisiología , Neuronas GABAérgicas/fisiología , Porción Reticular de la Sustancia Negra/fisiología , Animales , Conducta Animal , Channelrhodopsins/metabolismo , Femenino , Masculino , Ratones , Optogenética , Percepción del Tiempo
4.
Nat Neurosci ; 19(5): 742-748, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27043290

RESUMEN

The contribution of basal ganglia outputs to consummatory behavior remains poorly understood. We recorded from the substantia nigra pars reticulata (SNR), the major basal ganglia output nucleus, during self-initiated drinking in mice. The firing rates of many lateral SNR neurons were time-locked to individual licks. These neurons send GABAergic projections to the deep layers of the orofacial region of the lateral tectum (superior colliculus, SC). Many tectal neurons were also time-locked to licking, but their activity was usually in antiphase with that of SNR neurons, suggesting inhibitory nigrotectal projections. We used optogenetics to selectively activate the GABAergic nigrotectal afferents in the deep layers of the SC. Photo-stimulation of the nigrotectal projections transiently inhibited the activity of the lick-related tectal neurons, disrupted their licking-related oscillatory pattern and suppressed self-initiated drinking. These results demonstrate that GABAergic nigrotectal projections have a crucial role in coordinating drinking behavior.


Asunto(s)
Conducta de Ingestión de Líquido/fisiología , Neuronas GABAérgicas/fisiología , Porción Reticular de la Sustancia Negra/fisiología , Colículos Superiores/fisiología , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Microinyecciones , Muscimol/administración & dosificación , Muscimol/farmacología , Inhibición Neural/fisiología , Vías Nerviosas/fisiología
5.
Proc Natl Acad Sci U S A ; 113(3): E358-67, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26733686

RESUMEN

Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales.


Asunto(s)
Luz , Opsinas/metabolismo , Optogenética , Potenciales de Acción/efectos de la radiación , Animales , Conducta Animal , Femenino , Células HEK293 , Humanos , Luciferasas/metabolismo , Mediciones Luminiscentes , Ratones Endogámicos C57BL , Movimiento , Neuronas/metabolismo , Neuronas/efectos de la radiación , Ratas Sprague-Dawley , Rodopsina/metabolismo , Sustancia Negra/fisiología , Sustancia Negra/efectos de la radiación , Sinapsis/metabolismo , Sinapsis/efectos de la radiación , Volvox/metabolismo , Volvox/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA