Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771877

RESUMEN

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Asunto(s)
Nanopartículas , ARN Mensajero , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Nanopartículas/química , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Interleucina-4/metabolismo , Diabetes Mellitus Experimental , Humanos , Lípidos/química , Modelos Animales de Enfermedad , Masculino , Liposomas
2.
Artículo en Inglés | MEDLINE | ID: mdl-38769841

RESUMEN

The impact of strain on the formation energy and migration behavior of nitrogen vacancies (VNs) in Al1-xScxN has been investigated by first-principles calculations. The formation energy of VNs is obtained by total energy calculations. The migration barrier calculation utilizes the climbing nudged elastic band method. It is found that the formation energy of VNs is highly tunable with respect to the strain. The formation energy of VNs increases with the tensile strain increasing to +4% and decreases with the increasing compressive strain to -4%. A minimum formation energy of 4.11 eV is obtained when -4% strain is applied. Furthermore, the migration behavior of VNs is studied by calculating the migration barriers. Calculation results show that the migration barrier is strongly affected by strain. When the strain is -4%, the barrier is 2.46 eV while the barrier is increased to 2.71 eV under +4% strain. Therefore, a tensile strain can prevent the formation and migration of VNs. These findings suggest that strain engineering may serve as a tool for regulating VNs behavior in Al1-xScxN, potentially alleviating the ferroelectric degradations associated with VNs.

3.
J Colloid Interface Sci ; 669: 23-31, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38703579

RESUMEN

Although ordered porous carbon materials (PCMs) have shown promising potential in the field of electromagnetic wave absorption (EWA), creating multifunctional PCMs with outstanding microwave absorption performance remains a significant challenge. Herein, ordered porous carbon aerogels loaded with pea-pod-like nitrogen-doped carbon nanotubes (CNTs) were fabricated via orientation freeze-drying followed by high-temperature pyrolysis. The optimized aerogel exhibits extraordinary EWA performance with a broad effective absorption bandwidth of 7.68 GHz and exceptionally strong absorption of -91.58 dB at a low filling ratio of only 3 wt%, which is the largest absorption strength among all known aerogels to date. The exceptional EWA performance is attributed to the synergistic effect of abundant loss mechanisms resulting from a unique pod-like structure in ordered porous carbon aerogel, where nitrogen-doped CNTs encapsulate magnetic alloy nanoparticles. Optimized aerogel exhibits superior compressive elasticity, thermal insulation, and light weight, laying the groundwork for designing practical next-generation EWA materials.

4.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675541

RESUMEN

Hydrofluorocarbons (HFCs) have important applications in different industries; however, they are environmentally unfriendly due to their high global warming potential (GWP). Hence, reclamation of used hydrofluorocarbons via energy-efficient adsorption-based separation will greatly contribute to reducing their impact on the environment. In particular, the separation of azeotropic refrigerants remains challenging, such as typical mixtures of CH2F2 (HFC-23) and CHF3 (HFC-32), due to a lack of adsorptive mechanisms. Metal-organic frameworks (MOFs) can provide a promising solution for the separation of CHF3-CH2F2 mixtures. In this study, the adsorption mechanism of CHF3-CH2F2 mixtures in TIFSIX-2-Cu-i was revealed at the microscopic level by combining static pure-component adsorption experiments, molecular simulations, and density-functional theory (DFT) calculations. The adsorption separation selectivity of CH2F2/CHF3 in TIFSIX-2-Cu-i is 3.17 at 3 bar under 308 K. The existence of similar TiF62- binding sites for CH2F2 or CHF3 was revealed in TIFSIX-2-Cu-i. Interactions between the fluorine atom of the framework and the hydrogen atom of the guest molecule were found to be responsible for determining the high adsorption separation selectivity of CH2F2/CHF3. This exploration is important for the design of highly selective adsorbents for the separation of azeotropic refrigerants.

5.
Blood ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635773

RESUMEN

Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. In this study, we investigated the role of tRNA pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By utilizing patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic PUS1 mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA iPSCs and anemia in the MLASA mouse model. Both MLASA iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels due to pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mTOR inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment effectively ameliorated anemia phenotypes in the MLASA patient. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for anemia patients facing challenges related to protein translation.

6.
Acta Psychol (Amst) ; 245: 104199, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490131

RESUMEN

BACKGROUND AND PURPOSE: Obesity among children and adolescents continues to increase globally, and it is important to determine the factors associated with obesity among adolescents for the prevention and reduction of obesity. The purpose of this study is to understand the factors associated with the increase in the obesity rate among adolescents, providing a reference basis for the development of projects aimed at promoting adolescent health. METHODS: Using the raw data of 2021 adolescent health behavior online survey, this study analyzed demographic sociological factors, mental health, exercise habits, health behaviors and other categorical variables, and conducted the frequency, χ2 test for the difference in the proportion of obese and non-obese. According to the hierarchy model of obesity-related variables, binary logistics regression is used for multivariate analysis. This study used the original data of the 2021 Youth Health Behavior Online Survey, and performed frequency, χ2 tests on the differences in the proportion of obese and non-obese for categorical variables such as demographic sociological factors, mental health, exercise habits, and health behaviors. Multivariate analysis was performed using binary logistic regression based on hierarchical models of obesity-related variables. RESULTS: The obesity rate among Korean adolescents was 18.25 %. The obesity risk for females was reduced by 0.344 times compared to males (95 % CI = 0.327-0.361, p < 0.001); high school students had a 1.4 times higher obesity risk than middle school students (95 % CI = 1.379-1.511, p < 0.001); students with "Subjective household economic status" rated as "Medium" and 'Low' had their obesity risk increased by 1.07 times (95 % CI = 1.020-1.124, p < 0.01) and 1.254 times (95 % CI = 1.165-1.350, p < 0.001), respectively, compared to students with 'Subjective household economic status' rated as 'High'; students with 'Moderate' and 'Low' levels of 'Perceived stress' had their obesity risk reduced by 0.78 times (95 % CI = 0.74-0.823, P < 0.001) and 0.75 times (95 % CI = 0.70-0.803, P < 0.001), respectively, compared to students with 'High' levels of 'Perceived stress'; students engaging in 'Muscle strengthening exercise' '1-2 times/week' and "≥ 3 times/week" had their obesity risk reduced by 0.844 times (95% CI = 0.797-0.895, P < 0.001) and 0.575 times (95% CI = 0.537-0.616, P < 0.001), respectively, compared to students not participating in "Muscle strengthening exercise". CONCLUSION: The obesity rate of boys is higher than that of girls and high school students is higher than that of middle school students, and obesity is inversely proportional to family economic status. Mental health factors, exercise habits and eating habits are all important factors affecting adolescent obesity. It is suggested that gender differences, psychological factors, health habits, obesity education and healthy eating habits suitable for different age groups should be considered in the formulation of adolescent obesity policy.


Asunto(s)
Obesidad Infantil , Masculino , Femenino , Niño , Adolescente , Humanos , Obesidad Infantil/epidemiología , Conductas Relacionadas con la Salud , Ejercicio Físico/fisiología , Escolaridad , Hábitos
7.
iScience ; 27(3): 109265, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38450158

RESUMEN

Pseudouridylation plays a regulatory role in various physiological and pathological processes. A prime example is the mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA), characterized by defective pseudouridylation resulting from genetic mutations in pseudouridine synthase 1 (PUS1). However, the roles and mechanisms of pseudouridylation in normal erythropoiesis and MLASA-related anemia remain elusive. We established a mouse model carrying a point mutation (R110W) in the enzymatic domain of PUS1, mimicking the common mutation in human MLASA. Pus1-mutant mice exhibited anemia at 4 weeks old. Impaired mitochondrial oxidative phosphorylation was also observed in mutant erythroblasts. Mechanistically, mutant erythroblasts showed defective pseudouridylation of targeted tRNAs, altered tRNA profiles, decreased translation efficiency of ribosomal protein genes, and reduced globin synthesis, culminating in ineffective erythropoiesis. Our study thus provided direct evidence that pseudouridylation participates in erythropoiesis in vivo. We demonstrated the critical role of pseudouridylation in regulating tRNA homeostasis, cytoplasmic translation, and erythropoiesis.

8.
Bioact Mater ; 37: 86-93, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523704

RESUMEN

Since the approval of the lipid nanoparticles (LNP)-mRNA vaccines against the SARS-CoV-2 virus, there has been an increased interest in the delivery of mRNA through LNPs. However, current LNP formulations contain PEG lipids, which can stimulate the generation of anti-PEG antibodies. The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration. Given the widespread deployment of the COVID-19 vaccines, the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components. In this study, we investigated a series of polysarcosine (pSar) lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems. We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.

9.
Mucosal Immunol ; 17(2): 272-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382577

RESUMEN

Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1ß) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Humanos , Animales , Ratones , Linfocitos T , Interleucina-1alfa , Calidad de Vida , Pulmón , Interleucina-1 , Pérdida de Peso , Ratones Endogámicos BALB C
10.
Zookeys ; 1190: 39-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298408

RESUMEN

Species from east China belonging to the subgenus Curtonotus were studied, resulting in the description of a new species, Amara (Curtonotus) beijingensissp. nov. The type locality is Xiaolongmen Forest Park in Beijing. All the known macropterous Curtonotus species from eastern China are reviewed and for each species taxonomical notes, illustrations, and new provincial records are noted. An improved key for their identification is provided as well.

11.
Biomacromolecules ; 25(2): 655-665, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38242535

RESUMEN

The blood-brain barrier (BBB) and drug resistance present challenges for chemotherapy of glioblastoma (GBM). A microneedle (MN) patch with excellent biocompatibility and biodegradability was designed to bypass the BBB and release temozolomide (TMZ) and PLCG1-siRNA directly into the tumor site for synergistic treatment of GBM. The codelivery of TMZ and PLCG1-siRNA enhanced DNA damage and apoptosis. The potential mechanism behind this enhancement is to knockdown of PLCG1 expression, which positively regulates the expression of signal transducer and activator of transcription 3 genes, thereby preventing DNA repair and enhancing the sensitivity of GBM to TMZ. The MN patch enables long-term sustainable drug release through in situ implantation and increases local drug concentrations in diseased areas, significantly extending mouse survival time compared to other drug treatment groups. MN drug delivery provides a platform for the combination treatment of GBM and other central nervous system diseases.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Interferente Pequeño/genética , Resistencia a Antineoplásicos/genética , Terapia Combinada , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Affect Disord ; 348: 333-344, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171418

RESUMEN

BACKGROUND: The endocannabinoid system plays a crucial role in regulating mood, but the specific involvement of cannabinoid receptor type 2 (CB2R) in depression remains poorly understood. Similarly, the mechanisms by which electroacupuncture (EA) provides therapeutic benefits for depression are not clearly defined. This research aims to explore the function of CB2R in depression and examine if the therapeutic effects of EA are associated with the hippocampal CB2R system. METHODS: Mice experiencing social defeat stress (SDS) were used to model depression and anxiety behaviors. We quantified hippocampal CB2R and N-arachidonoylethanolamide (AEA) levels. The efficacy of a CB2R agonist, JWH133, in mitigating SDS-induced behaviors was evaluated. Additionally, EA's impact on CB2R and AEA was assessed, along with the influence of CB2R antagonist AM630 on EA's antidepressant effects. RESULTS: SDS led to depressive and anxiety-like behaviors, with corresponding decreases in hippocampal CB2R and AEA. Treatment with JWH133 ameliorated these behaviors. EA treatment resulted in increased CB2R and AEA levels, while AM630 blocked these antidepressant effects. LIMITATIONS: The study mainly focused on the SDS model, which may not entirely reflect other depression models. Besides, further investigation is needed to understand the precise mechanisms by which CB2R and AEA contribute to EA's effects. CONCLUSIONS: The study suggests hippocampal downregulation of CB2R and AEA contributes to depression. Upregulation of CB2R and AEA in response to EA suggests their involvement in EA's antidepressant effects. These findings provide insights into the role of the hippocampal CB2R system in depression and the potential mechanisms underlying EA's therapeutic effects.


Asunto(s)
Cannabinoides , Depresión , Ratones , Animales , Receptores de Cannabinoides , Depresión/tratamiento farmacológico , Derrota Social , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Antidepresivos
13.
Nat Commun ; 15(1): 739, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272900

RESUMEN

Adipose stem cells (ASCs) have attracted considerable attention as potential therapeutic agents due to their ability to promote tissue regeneration. However, their limited tissue repair capability has posed a challenge in achieving optimal therapeutic outcomes. Herein, we conceive a series of lipid nanoparticles to reprogram ASCs with durable protein secretion capacity for enhanced tissue engineering and regeneration. In vitro studies identify that the isomannide-derived lipid nanoparticles (DIM1T LNP) efficiently deliver RNAs to ASCs. Co-delivery of self-amplifying RNA (saRNA) and E3 mRNA complex (the combination of saRNA and E3 mRNA is named SEC) using DIM1T LNP modulates host immune responses against saRNAs and facilitates the durable production of proteins of interest in ASCs. The DIM1T LNP-SEC engineered ASCs (DS-ASCs) prolong expression of hepatocyte growth factor (HGF) and C-X-C motif chemokine ligand 12 (CXCL12), which show superior wound healing efficacy over their wild-type and DIM1T LNP-mRNA counterparts in the diabetic cutaneous wound model. Overall, this work suggests LNPs as an effective platform to engineer ASCs with enhanced protein generation ability, expediting the development of ASCs-based cell therapies.


Asunto(s)
Tejido Adiposo , Diabetes Mellitus , Humanos , Tejido Adiposo/metabolismo , ARN/metabolismo , Cicatrización de Heridas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/metabolismo , Diabetes Mellitus/metabolismo
14.
Fish Shellfish Immunol ; 145: 109348, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163493

RESUMEN

Galectins are lectins that bind to ß-galactose and are widely expressed in immune system tissues, playing pivotal roles in innate immunity through their conserved carbohydrate-recognition domains (CRDs). In this present investigation, a tandem-repeat galectin was discovered in the largemouth bass, Micropterus salmoides (designated as MsGal-9). The open reading frame of MsGal-9 encodes two CRDs, each containing two consensus motifs that are essential for ligand binding. MsGal-9 is expressed in various tissues of the largemouth bass, with particularly high expression levels in the liver and spleen. The full-length form of MsGal-9, as well as the N-terminal (MsGal-9-N) and C-terminal (MsGal-9-C) CRDs, were individually recombined. Their ability for nonself recognition was studied. The three recombinant proteins were able to bind to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS), with MsGal-9 displaying the highest binding activity. Furthermore, rMsGal-9-N exhibited higher binding activity towards GLU in comparison to rMsGal-9-C. Further investigations revealed that the full-length rMsGal-9 could significantly bind to Gram-positive bacteria, Gram-negative bacteria, and fungi, while rMsGal-9-C specifically bound to Escherichia coli. However, rMsGal-9-N did not exhibit significant binding activity towards any microbes. These findings indicate that MsGal-9 requires both CRDs to cooperate in order to fulfill its nonself recognition function. All three recombinant proteins demonstrated agglutination activity towards various microbes, with MsGal-9 and MsGal-9-N displaying a similar broad binding spectrum, while MsGal-9-C agglutinated three types of bacteria. Moreover, both MsGal-9 and MsGal-9-N were capable of coagulating largemouth bass red blood cells, whereas MsGal-9-C lacked this ability. However, MsGal-9-C played a significant role in enhancing the encapsulation of leukocytes in comparison to MsGal-9-N. All three proteins acted as potential damage-associated molecular patterns (DAMPs), inducing apoptosis in leukocytes.


Asunto(s)
Lubina , Galectinas , Animales , Galectinas/genética , Lubina/metabolismo , Secuencia de Aminoácidos , Alineación de Secuencia , Receptores de Reconocimiento de Patrones/metabolismo , Inmunidad Innata , Proteínas Recombinantes , Carbohidratos , Filogenia
15.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170817

RESUMEN

Supercritical fluids (SCFs) can be found in a variety of environmental and industrial processes. They exhibit an anomalous thermodynamic behavior, which originates from their fluctuating heterogeneous micro-structure. Characterizing the dynamics of these fluids at high temperature and high pressure with nanometer spatial and picosecond temporal resolution has been very challenging. The advent of hard x-ray free electron lasers has enabled the development of novel multi-pulse ultrafast x-ray scattering techniques, such as x-ray photon correlation spectroscopy (XPCS) and x-ray pump x-ray probe (XPXP). These techniques offer new opportunities for resolving the ultrafast microscopic behavior in SCFs at unprecedented spatiotemporal resolution, unraveling the dynamics of their micro-structure. However, harnessing these capabilities requires a bespoke high-pressure and high-temperature sample system that is optimized to maximize signal intensity and address instrument-specific challenges, such as drift in beamline components, x-ray scattering background, and multi-x-ray-beam overlap. We present a pressure cell compatible with a wide range of SCFs with built-in optical access for XPCS and XPXP and discuss critical aspects of the pressure cell design, with a particular focus on the design optimization for XPCS.

16.
Small ; 20(13): e2307770, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963831

RESUMEN

Understanding the gold core-ligand interaction in gold nanoclusters (GNCs) is essential for the on-demand tailoring of their photoluminescence properties and long-term stability. Here, inspired by the suckers arranged directionally on the tentacles of octopus, a series of GNCs with regulating ligand structures are grown and stabilized on the cellulose nanocrystals (CNCs). The carboxylated CNCs providing an electron-rich environment to promote the luminescence of GNCs and stabilize it within a long-term of 1 year through anchoring and diluting effects, and the highest quantum yields reaches 31.02% in ultrapure water. Interestingly, this bionic preparation strategy is generally applicable to various ligands for tailoring on-demand hROS-responsive and nonresponsive GNCs to construct tunable-emission wavelength dual GNCs ratiometric probes. The results show that designing a specific ligand structure to inhibit the transformation of Au-Au to Au (I)-ligand in GNCs is crucial to regulate the hROS-responsive characteristics. As expected, the interfacial compatible dual GNCs ratiometric probe with a hROS limit of detection of 0.74 µmol L-1 can diagnose certain diseases through intracellular hROS imaging. This work provides important insights for understanding the gold core-ligand interaction in GNCs during the oxidation process triggered by intracellular hROS.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Ligandos , Luminiscencia , Diagnóstico por Imagen , Nanopartículas del Metal/química
17.
Front Nutr ; 10: 1273509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089925

RESUMEN

Objective: Pelvic inflammatory disease (PID) is a prevalent gynecological disorder. Dietary trace minerals play an important role in combating many chronic diseases including PID. However, it is unknown whether dietary trace minerals and PID are related. This study aimed to examine the relationship between dietary trace minerals (copper, iron, selenium, and zinc) and PID. Methods: Data of women participants from the National Health and Nutrition Examination Survey (NHANES) 2015-2018 were enrolled in this cross-sectional investigation. Univariate and multivariate linear regression analyses of the relationship between dietary trace minerals and PID were performed, and restricted cubic spline (RCS) analyses were applied to visualize those relationships. Results: In total, 2,694 women between the ages of 20 and 59 years participated in the two NHANES cycles. In the univariate analyses, a significant negative relationship was identified between PID and dietary copper intake [odds ratio (OR) = 0.40, 95% confidence interval (CI): 0.24-0.67, p < 0.01] but not with iron (OR = 0.96, 95% CI: 0.90-1.03, p = 0.25), selenium (OR = 1.0, 95% CI: 0.99-1.0, p = 0.23), and zinc (OR = 0.94, 95% CI: 0.86-1.03, p = 0.17) intake. Following the adjustment for age and race (model 1), a robust correlation was found between dietary copper intake and PID (OR = 0.23, 95% CI = 0.09-0.61, p < 0.01), as indicated by the fully adjusted model 2 (OR = 0.29, 95% CI = 0.09-0.90, p = 0.03). Simultaneously, a significant trend was found between copper intake and PID across the quintile subgroups (p for trends <0.05), suggesting a robust relationship. Furthermore, the RCS analysis demonstrated a linear correlation between PID and dietary copper intake (overall p < 0.01, non-linear p = 0.09). Conclusion: Decreased dietary copper intakes are linked to PID. However, additional research is needed to fully investigate this relationship due to the constraints of the study design.

18.
ACS Sens ; 8(12): 4646-4654, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37976675

RESUMEN

An air-insulated power equipment adopts air as the insulating medium and is widely implemented in power systems. When discharge faults occur, the air produces decomposition products represented by NO2. The efficient NO2 sensor enables the identification of electrical equipment faults. However, single-sensor-dependent NO2 detection is vulnerable to interfering gases. Implementing the sensor array could reduce the interference and improve detection efficiency. In the field of NO2 detection, In2O3 sensors have exhibited tremendous advantages. In our work, four composites based on In2O3 are integrated into sensor arrays, which could detect 250 ppb of NO2 and exhibit excellent selectivity when simultaneously exposed to CO. To further reduce the impact of humidity on gas-sensing performance, a convolutional neural network and a long short-term memory model equipped with an attention mechanism are proposed to evaluate NO2 concentration within 1 ppm, and the detection error is 63.69 ppb. In addition, the NO2 concentration estimation platform based on a microgas sensor is established to detect air discharge faults. The average concentration of NO2 generated by 10 consecutive discharge faults at 15 kV is 726.58 ppb, which indicates severe discharge in the switchgear. Our NO2 estimation method has great potential for large-scale deployment in low- and medium-voltage switchgears.

19.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4123-4134, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37877395

RESUMEN

Heterotypic cell-in-cell structures (heCICs) are closely related to tumor development and progression, and have become a new frontier in life science research. Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the classic Rho GTPase, which plays a key role in regulating the cytoskeleton and cell movement. To investigate the role and mechanism of Rac1 in the formation of heCICs, tumor cells and immune killer cells were labeled with cell-tracker, respectively, to establish the heCICs model. Upon treatment with the Rac1 inhibitor NSC23766, the formation of heCICs between tumor and immune cells was significantly reduced. The plasmid pQCXIP-Rac1-EGFP constructed by gene cloning was packaged into pseudoviruses that subsequently infect tumor cells to make cell lines stably expressing Rac1. As a result, the formation of heCICs was significantly increased upon Rac1 overexpression. These results demonstrated a promotive role of Rac1 in heCICs formation, which may facilitate treating cell-in-cell related diseases, such as tumors, by targeting Rac1.

20.
J Org Chem ; 88(21): 14874-14886, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37862710

RESUMEN

An efficient oxidant-free, photoredox-mediated cascade cyclization strategy for the synthesis of 1,3,4-oxadiazoles by using an organo acridinium photocatalyst and a cobaloxime catalyst has been developed. Various acylhydrazones have been transformed into the corresponding 1,3,4-oxadiazole products in up to 96% yield, and H2 is the only byproduct. Mechanistic experiments and density functional theory (DFT) calculation studies indicate carbon-centered radicals rather than oxygen-centered radicals as π-radicals produced by the oxidation of photoexcited Mes-Acr+* along with deprotonation, which is responsible for this transformation. The practical utility of this method is highlighted by the one-pot gram-scale synthesis starting directly from commercially available aldehydes and acylhydrazides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...